ECOLOGICAL RESERVES UNIT 1019 WHARF ST VICTORIA, B.C. VEN 279

PROVINCE OF BRITISH COLUMBIA MINISTRY OF LANDS, PARKS AND HOUSING

TSITIKA WATERSHED
PROPOSED TIMBER EXCHANGE
BETWEEN
THE PROVINCE OF BRITISH COLUMBIA
AND
MACMILLAN BLOEDEL LTD.

APPRAISAL REPORT

AUGUST 1985

HOLMSEN FORESTRY LTD.

PROVINCE OF BRITISH COLUMBIA MINISTRY OF LANDS, PARKS AND HOUSING

ECOLOGICAL RESERVES COLLECTION GOVERNMENT OF BRITISH COLUMBIA VICTORIA, B.C. VSV 1X4

TSITIKA WATERSHED
PROPOSED TIMBER EXCHANGE
BETWEEN
THE PROVINCE OF BRITISH COLUMBIA
AND
MACMILLAN BLOEDEL LTD.

APPRAISAL REPORT

AUGUST 1985

PREPARED BY:

KARSTEN HOLMSEN, R.P.F.

HOLMSEN FORESTRY LTD.

4.00			
Profits Control Contro			
The second secon			
\$50 60 860			
The second of th			
B600			

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SYNOPSIS	2
2.1	TFL # 39 Schedule "A" Exchange	2
2.2	TFL # 39 Productive Capacity Replacement	2
2.3	Crown Grant, Lot 223, Valuation	2
3.0	AREA DESCRIPTION	3
3.1	General	3
3.2	TFL # 39 Schedule "A"	3
3.21	Take Area	3 3
3.211	ER 1 - Robson Bigh	3
3.212	ER 5 - Muskeg Creek	4
3.22	Receive Area	4
3.3	TFL # 39 Productive Capacity Replacement	5
3.4	Crown Grant, Lot 223	5
4.0	APPRAISAL PROCEDURE	4
4.1	General	6
4.2	Field Examination	7
4.3	Road Development	7
4.31	Slope, Terrain Group and	
	Construction Category	8
4.4	Operating Costs	8
4.5	Log Market Values	8
4.51	General	8
4.52	COFI Log Price Analysis	9
5.0	DETERMINATION OF PRODUCTIVE CAPACITY	10
5.1	General	10
5.2	Determination of Site Index	10
5.3	Yield Table Selection	11
6.0	VALUATION AND ANALYSIS	12
6.1	General	12
6.2	Schedule "A" Land Exchange	12
6.3	Productive Capacity Replacement	14
6.4	Crown Grant, Lot 223	16
6.5	Capital Gains Taxation	17
6.6	Comments	18
7.0	SUMMARY AND CONCLUSIONS	19

TABLES

	Page
Table 1 - Valuation of MB Schedule "A" Exchange Lands	13
Table 2 - Productive Capacity Replacement TFL # 39, Schedule "B"	14
Table 3 - Valuation, Crown Grant, Lot 223	17

APPENDICES

APPENDIX I	TERMS OF REFERENCE
APPENDIX II	PHOTOS
APPENDIX III	APPRAISAL SUMMARY - TAKE AREA, ER 1 ROBSON BIGHT
APPENDIX IV	APPRAISAL SUMMARY - TAKE AREA, ER 5 MUSKEG CREEK
APPENDIX V A	APPRAISAL SUMMARY RECEIVE AREA - SCHEDULE "A" (EQUAL VALUE)
APPENDIX V B	APPRAISAL SUMMARY RECEIVE AREA - SCHEDULE "A" (EQUAL VOLUME)
APPENDIX VI A	APPRAISAL SUMMARY CROWN GRANT, LOT 223 - (CALL GRADES)
APPENDIX VI B	APPRAISAL SUMMARY CROWN GRANT, LOT 223 - (COMPUTER GRADES)
APPENDIX VII	ROAD DISTANCE SUMMARIES
APPENDIX VIII	CONSTRUCTION GROUP DISTRIBUTION
APPENDIX IX	LOG PRICE TREND - POLYNOMIAL CURVE FIT HEMLOCK # 3 - EXAMPLE
APPENDIX X	LOG PRICE TREND - NATURAL LOGARITHM CURVE FIT HEMLOCK # 3 - EXAMPLE
APPENDIX XI	LOG PRICE COMPARISON AND SUMMARY
APPENDIX XII	PRODUCTIVE CAPACITY EXCHANGE SUMMARY
APPENDIX XIII	REAL ESTATE VALUATION REPORT CROWN GRANT, LOT 223

ACKNOWLEDGEMENTS

The appraiser would like to extend his appreciation for the cooperation received from the Ministry of Forests and Macmillan, Bloedel during the preparation of this appraisal. Staff from the Ministry of Forests at District, Regional, and Frovincial levels have been very helpful in providing information requested. MacMillan, Bloedel camp and headquarter personnel have contributed valuable operational, yield projection and log marketing information and advice.

The interaction with all the individuals contacted in this project has been very fruitful and enjoyable.

1.0 INTRODUCTION

An exchange of timber rights is proposed between the Province of British Columbia and MacMillan Bloedel Ltd. to offset the effect of land withdrawals from Tree Farm Licence # 39 for the purposes of establishing Ecological Reserves # 1 and 5.

In a letter dated March 14, 1985, the Minister of Forests appointed HOLMSEN FORESTRY LTD. as the independent appraiser for the proposed exchange of timber rights between the Province and MacMillan Bloedel Ltd. in the Tsitika watershed. An agreement, dated June 5th, 1985, was signed between the Minister of Lands. Parks and Housing and HOLMSEN FORESTRY LTD.. Copies of the Terms of Reference and Appraisal Specifications, which were a part of the agreement, are found in **Appendix I** of this report. In accordance with the guidelines, the real estate evaluation of the Crown Grant, Lot 223, was subcontracted to John Miller, A.A.C.I., of D.R. Coell & Associates, Inc.

A walk-through field examination of all areas was completed during the month of June. The visit to Lot 223 at Robson Bight was coordinated with the real estate appraiser to allow in-the-field discussions between the land and timber appraisers and to make the most efficient use of helicopter time.

Timber cruise data, provided by Reid, Collins and Associates Ltd., provided basic information for the appraisal input. Although the procedures outlined by the Ministry of Forests' Coastal Log Based Appraisal Manual, dated January 1, 1985, were generally followed in this appraisal, minor modifications were applied to ensure consistency and improve accuracy. Average log market values were established from long term trend analysis. The values prepared and submitted in this report are the Appraiser's best estimates as of July 31, 1985, in terms of 1985 dollars.

2.0 SYNOPSIS

2.1 TFL # 39 Schedule "A" Exchange

The Take area totals 292,000 m3 on 396.4 ha of merchantable area for a total estimated value of \$ 3,185,000. To equal this value, the Schedule "A" *Receive* area is estimated to require 332,000 m3 and cover an area of 378.8 ha.

2.2 TFL # 39 Productive Capacity Replacement

The *Take* areas are estimated to have a total annual productive yield capacity of 3,700 m3 on 396.4 ha of merchantable area (440.6 ha total area). To equalize this productive capacity, 518.4 ha of merchantable area, or a total of 602.2 ha, is required from the *Replacement* area.

2.3 Crown Grant, Lot 223, Valuation

The estimated timber volume on Lot 223 totals 27,249 m3 on 34.8 ha of merchantable area for a value of \$ 329,500. The bare land real estate value is estimated at \$ 84,600.

Total Property Value, Lot 223: \$ 414,100

3.0 AREA DESCRIPTION

3.1 General

The geographic location, general topography, timber types and quality, have been described in the cruise report prepared by Reid, Collins. Therefore, additional area description in this report will relate primarily to location and topographic features affecting the operational chance. The location of each area is shown on the **Key Map**, page iv. A set of photographs giving general views of the areas is found in **Appendix II**. The productive capacity replacement area near O'Connor Lake is in the Port McNeill Forest District. All the other areas are located within the Campbell River Forest District.

- 3.2 TFL # 39 Schedule "A"
- 3.21 Take Area
- 3.211 ER 1 Robson Bight

The alluvial plann in the centre of the area would offer few operational problems. If the area were to be logged, small temporary bridges would have to be installed in the river fan area to provide access to a number of small islands in the Isitika River delta. If harvested during a period of relatively low river flow, little disturbance and cost would be incurred in the access construction and harvesting of these areas. The appraisal assumes that harvesting methods would have been portable high lead steel spars and grapple yarders. It is also assumed that a log dump would have been established at the mouth of Tsitika River.

The area to the west of the river delta consists of a timbered, rocky shoreline. Although the terrain is rocky and somewhat broken, benches running roughly parallel to the water would accommodate road and landing development within reasonable yarding distance from the water's edge. It is assumed that this area will be restricted to high lead spar yarding.

The area to the east of Tsitika River is steep and rocky with numerous bluffs. Natural benches in this area, that would facilitate road and landing development, are infrequent within reasonable yarding distance from the water's edge. A saddle and ridge running south of the area boundary would provide general access. Direct access onto the area to provide reasonable yarding distances will be difficult and very costly. Long yarding distances would be expected. Therefore, some skyline yarding is assumed for this section.

Overall for the area, 50 percent high lead spar, 20 percent skyline, and 30 percent grapple yarding has been assumed.

3.212 ER 5 - Muskeg Creek

Aside from a rocky ridge between Muskeg Creek and a large swamp, the area is relatively flat. Few problems would be encountered in road development, although some soft and wet sections would require substantial ballasting. Harvesting methods are assumed to be a combination of 60 percent spar and 40 percent grapple yarding.

3.22 Receive Area

The *Receive* area is gentle sloping with generally very good ground conditions. A steep and somewhat rocky area in the western section, initially included in the cruise compilation, was excluded when area reduction was required to equate timber value between *Take* and *Receive* areas. This improved the overall slope and terrain factors for the area. Excellent terrain deflection, and the opportunity for a relatively inexpensive parallel road system development, render this area very suitable for grapple yarding.

A combination of 70 percent grapple and 30 percent spar high lead yarding has been assumed. A map of the proposed *Receive* area is found in **Map Pocket # 1**, following the Appendices.

3.3 TFL # 39 Productive Capacity Replacement

The **Productive Capacity Replacement** area was selected on old, logged over timber licences to the south of O'Connor Lake. Except for a few small patches of old growth timber, growing on rocky knolls or ridge tops, the entire area has been roaded with fair to good standard roads. Logging technology and road requirements may drastically change over the next rotation. It would be expected that a substantial value in the road development would still exist when the present crop becomes mature. Under present logging system standards, the rolling to somewhat broken terrain would lend itself primarily to spar high lead yarding. A map showing the proposed **Productive Capacity Replacement** Area is found in **Map Pocket # 2**, following the Appendices.

3.4 Crown Grant, Lot 223

Lot 223, located at the mouth of Tsitika River, is transected by several river channels: old, over grown, intermittent and perennial. Except for the northeast corner, which is very steep and rocky, the area is generally flat. The alluvial plain would offer few operational problems. If the area were to be logged, small temporary bridges would have to be installed across the river channels to provide access to a number of small islands in the Tsitika River delta. If harvested during a period of relatively low river flow, little disturbance and cost would be incurred in the access construction and harvesting of these Road development into the northeast section of the property would only be feasible in conjunction with development of the adjacent areas of TFL # 39. It has been assumed that harvesting methods would have consisted of 60 percent grapple yarding, 20 percent portable high lead spar yarding, and 20 percent skidding with rubber tired line skidder.

"TSITIKA WATERSHED PROPOSED TIMBER EXCHANGE BETWEEN THE PROVINCE OF BRITISH COLUMBIA AND MACMILLAN BLOEDEL LTD"

APPRAISAL REPORT

AMENDMENT NO. 1

VALUE OF CUTTING RIGHTS ON TAKE AREAS

Crown cutting rights, or "quota", are not officially recognized assets that can be sold as separate entities, although these rights often constitute the prime values of a forest company's assets. Transactions involving timber cutting rights therefore always include manufacturing facilities and/or equipment that often are old and obsolete and are considered liabilities rather than assets. Consequently, actual values paid for cutting rights are difficult to isolate, particularly if the transactions involve manufacturing facilities and equipment that have value as a going concern and which will be operated by the new owner.

Size of the cutting rights, location, accessibility and stage of development, terrain, transport distance, timber quality, size and density, local demand as well as the suitability of integration with a purchaser's existing operation in the area, are all factors that could affect the potential value of such a transaction. There have been isolated examples, such as in the northeast corner of the Province, where the value of the actual cutting rights of a defunct company has been estimated to be nil.

Although it was common in the past to generalize that the price for "quota" in a particular region was, say, \$ 100/Cunit, and actually pay that value, this is no longer the case. Present buyers are much more cautious about the value and the expected conversion return from potential acquisitions. Therefore, we have more site specific valuations and apparent fluctuations in the actual price attached to the value of the cutting right transactions.

The value of cutting rights must be considered in the long term. Extreme market flucations should therefore have little effect on the price paid for these rights. The fact remains, however, that prices paid for cutting rights during optimistic and peak market periods are considerably higher than during depressed market conditions. As much as \$35/m3\$ was paid for Crown cutting rights in the Vancouver Forest Region during the high market periods of the late 1970° s.

Although recent (last two years) comparable transactions are few, and the actual value attached to the cutting rights is difficult to isolate, values range as indicated below (estimates or unconfirmed reports):

North Coast	e. W		\$ 5.00/m3
Mid-Coast:			10.00 "
Lower Coast	(Upper Inlets)	*	7.00 "
Lower Coast	(Sechelt):		25.00 "
Central Inte	rior:		25.00 "

Discussions with industry officials who could potentially be interested in acquiring additional cutting rights on the lower coast, indicate low demand and suggest values in the \$ 10.00 to \$ 15.00/m3 range. The current problems in the forest industry and the closure of several mills appears to reflect the low demand and value. In the longer term, however, projected general timber shortages are expected to drive "quota" values upward.

The table below applies a discounted cash flow (DCF) approach to the calculated M.A.I. and estimated annual net returns from the Take Areas:

MB TAKE AREA - ESTIMATED VALUE OF ANNUAL CUT

		ER 1	ER 5	Total
Estimated M.A.I., m3	/ha/yr	2943	785	3728
Take Area Volume,	m3	246162	45742	291904
Take Area Estimated Net Retur	n, \$	539851	167263	707114
Estimated Net Return,	\$/m3			2.42
Annual Net Return,	\$			9030.78
Discount Rate.	%	4	රු	8
NPV of Future Annual Returns,	\$	225770	150513	112885
Value of Annual Cut,	\$/m3	60.56	40.37	30.28

As indicated, the net value of the annual cut exclusive of allowances for profit and risk, as applied to this specific area, range from \$ 30/m3 using an eight percent discount rate, to \$ 60/m3 using a four percent rate.

Although the annual cut would have this value to the present operator, a prudent purchaser would likely discount this value to allow for profit and risk. It would be reasonable to expect the market value of these cutting rights to be about one half of the above indicated values, \$ 15/m3 and \$ 30/m3, respectively, for the discount rate examples chosen. A discount rate of about six percent could be supported for forestry investment in long term secure tenure and wood supply.

A reduction in TFL annual allowable cut as a result of the withdrawal of ER 1 and 5, must be looked upon as affecting the average cost conditions of the entire tree farm licence. Without an intimate knowledge of TFL # 39, it is the Appraiser's opinion that the Take Area net return, as applied in this concept, would, because of the high cost of crew transportation, be somewhat lower than the average for Tree Farm # 39.

The Appraiser would estimate the value of the cutting rights on MacMillan Bloedel's TFL # 39 to be in the \$ 20.00 to \$ 25.00/m3 range, representing a value of about \$ 80.000.

"TSITIKA WATERSHED PROPOSED TIMBER EXCHANGE BETWEEN THE PROVINCE OF BRITISH COLUMBIA AND MACMILLAN BLOEDEL LTD"

APPRAISAL REPORT

AMENDMENT NO. 2

BARE LAND VALUE OF LOT 223 BASED ON YIELD CAPACITY

The bare land value of Crown Grant Lot 223 based on the exclusive use for tree farming, capitalizing future periodic incomes, is estimated at

\$ 25 900.00

The estimated value is derived using the following procedure and assumptions:

- a. Yield Projection The annual yield contribution of Lot 223 to Tree Farm No. 21 was calculated using MacMillan Bloedel Ltd.'s yield equations for Douglas fir and hemlock applied to the six timber types on the area. Culmination age yields were calculated initially for each type to determine maximum annual yield (Annex 1a). As the productive area is only 34.8 hectares, it is assumed that for practical reasons, the area would be cut as one unit, if logged. Therefore, on the basis of the calculated weighted culmination age of 70 years, yield projections were made for all types using a 70-year rotation age (Annex 1b). A periodic yield of 27 426 m3 is estimated for the area based on a 70-year rotation.
- b. Appraisal Procedure Conversion returns and upset stumpage values were calculated using the MOF appraisal method as applied to the current valuation. Input values were based on average tree sizes and total merchantable volume derived as shown in Annex 1b. Development costs for subsequent rotations were assumed to be one half of original construction costs. All values are in 1985 dollars. Because of the smaller average timber size to be harvested in future rotations, forty percent of the volume is estimated to be harvested with skidders and frontend loaders.

Grade distribution was based on data provided by MB from a second growth stand harvested in the Port McNeill area. Age (77 years), site index (mostly 30), volume (27 862 m3), and species distribution were quite similar to projections used for Lot 223. Species distribution was maintained the same as the original, although grade distribution was applied as indicated by the Port McNeill timber stand. Print-outs of the appraisal calculations are found in **Annex 2**.

Projected market values are the same as the ones applied to the current timber stand for 1985. Estimated upset stumpage value and conversion return are \$ 274 836 and \$ 395 429, respectively. The conversion return, less forestry costs of 14 percent of stumpage value (\$ 38 477), or \$ 356 952 has been used as the base value for periodic net returns exclusive of annual property taxes and real value growth rate of timber values.

- c. Real Rate of Growth Earlier studies of long term appreciation of coastal log values have indicated a real inflation free rate of growth of about 2.5 percent per annum. Therefore, a real rate of growth of 2.5 per cent per annum has been applied to the estimated conversion return of \$ 395 429 to come as periodic 70-year incomes from timber harvests of Lot 223. The net present value calculation is found in Annex 3. The current (1985) property tax of 403.16 (Annex 4) has been applied with an assumed growth rate directly related to the timber value of 2.5 percent per annum.
- d. Discount Rate The discount rate is the most sensitive factor in determining the value based on long term yield capacity of the land. The real discount rate to be applied to a Discounted Cash Flow (DCF) of this nature is difficult to establish. Basically, the real rate of interest is the ratio between the current prime borrowing rate and inflation rate:

$$R = \frac{i - f}{1 + f}$$

where: R = real discount rate
 i = nominal bank rate
 f = inflation rate

An analysis of Bank of Montreal's last 25 years' prime commercial lending rates related to inflation rates (All items CPI - Vancouver) indicates a fluctuating relationship (refer to Annex 5). Because of sensitivity to timing (inflation and prime rate fluctuations are frequently unsynchronized), the indicated Real Rate of Interest can vary greatly within a few months. Because of the long term aspect of this appraisal, the accumulated average from the 25 years analysed, a Real Rate of Interest of 3.07 %, has been used.

Depending on individual or company policies, type of business, financial status and length of discounting period, various upward adjustments may be made to the basic real rate of interest. Applied to timberland valuation for future harvests these adjustments are estimated to range as outlined in **Table 1**:

Table 1 - Estimated Real Rate of Interest Adjustments

Reason for Adjustment	Adjustment Short term Long term
a. Risk of Loss of Timberb. Risk of Adverse Change in Tenurec. Short vs. Long Term Investmentd. Economic Stability (climate)	0.0 to 1.0 % 0.0 to 2.0 % 3.0 to 1.0 % 0.0 to 3.0 %

Applying these adjustments to the **Real Rate of Interest** indicated above, the adjusted discount rates indicated in **Table 2** are applied to the 1971 and 1981 appraisals:

Table 2 - Adjusted Discount Rate. %

	1985
	Long
	<u>term</u>
Real Rate of Interest	3.1
Risk of Loss of Timber	1.0
Risk of Adverse Change in Tenure	0.5
Short vs. Long Term Investment	1.0
Economic Climate (stability)	<u>0.5</u>
Indicated Discount Rate	<u>6.1</u>

The rate developed is considerably lower than going industrial rates. A lower discount rate applied to long term investment in timber is considered acceptable and is supported by Bennett B. Foster in the article "Multiple Discount Rates for Evaluating Public Forestry Investments" (The Forestry Chronicle, February 1979). A discount rate, rounded to 6 percent was therefore used in calculation of the present net value.

A company tax rate has not been applied.

The net present value of future net cash flows, or the bare land value, is estimated at \$ 25 877. or \$ 710.91 per hectare.

Mag Forest	Establ S	Establ Stand age Growth	Growth	Site	Site		Weigh	S 1.8 pa	tand Ht N		Avg. DBH	BA	Vol/ha		æ **		
Type Type	Year	1985	1985 Type grp	Napul 100	Index 50	Type ha	100	100 50 a per ha	•		*	#3	(B)	1.8.1		Cul.age Ann.yield Tot.Yield	ot. Yiel
9-196 H8 I		0	F	40	33	9.7	388.0	339.5	35.0	784	33,4	62.7	878.7	15,35	ů,	148.90	8040
2 H 961-6		0	-	9	35	, co	312.0	273.0	35.0	784	33.4	62.7	828.7	15.35	5	119.73	646
3 \$ 851-6		0	6	40	33	***	172.0	141.9	40.8	504	42.5	60.1	9.598	10.66	88	45,84	3713
4 F(S) 340-6		0	7	50	39	-	70.0	54.6	46.3	435	48.6	65.9	1074.1	14.51	74	20.31	120
5 HSIC) 941-P		0	1	. 28	61	1.7	215.6	146.3	26.9	819	27.5	51.2	521.6	5,49	95	42.27	4016
6 D 340-N		0	91	3%	25	3.9	140.4	97.5	30.4	840	30.1	57.1	4.099	8.	75	34,36	727
Total Productive				37.30	30.25	34.8	1298.0	1052.8	33.9	749	33.5	59.3	756.1	11.82	7¢	411.41	26315
Non-commercial Brush	1 Brush					0.3											
Non-Productive Rock	e Rock																
Water						0.0					÷						
Intal Area						36.4											

Annex 1b

N & B, CROWN GRANT LOT 223, ROBSON BIGHT - Productive Capacity, 70-year Rotation Periodic Harvesting

Nap Forest Establ Type Type Year	Establ Stand age Growth Year 1985 Type grp	Growth Type grp	Site Index 100	Site Index 50	Area in Type ha	Weight 100	Weighted 5.1. Stand Ht No.stems 100 50 m per ha	tand Ht N	o.stems per ha	Avg. DBH	B 28	Vol/ha		f & B Rot, age	n k b Rot.age Ann.yield Tot.Yield	ıt. Yield
5-176 Ha	c	7	() P	35	9.7	388.0	339.5	40.3	, 029	37,3	199	1011.6	14,45	70	140.17	9812
2 19 19 18 18	· 🗢	. [0.	, kn	7.8	312.0	273.0	40.3	920	37.3	1.99	1011.6	14.45	70	112,71	7890
2	• •	- Eh-	<u>0</u>	K	**	172.0	141.9	37.5	747	18 7	55.9	737.0	10.53	70	45, 28	3170
4 5 (5) 340-6	0	2	20	39		70.0	54.6	4.8	5	46.8	64.4	1014.6	14.49	70	26.29	1420
5 HS(E) 941-P		i P~~	28	5	7.7	215.6	146.3	22.4	169	24.3	41.0	357.0	5,10	70	39.27	2749
6 D 340-M	0	91	36	25	3.9	140.4	97.5	29.2	840	29.2	55,3	6111.9	8,74	70	34.09	2386
Total Productive			37,30	30,25	34,8	1298.0	1052.8	34.9	199	34.1	58.3	788.2	11.26	70	391.80	27426
Non-commercial Brush					0.3											
Non-Productive Rock					-3											
Hater					0,0											
Total Organ					7.4.47											

VANCOUVER FOREST REGION APPRAISAL DATA SHEET

Page 1

******	*********	**********					*******	*******	*******	*******	******	******
Litence	* *	ER1 Lot 22	3	Appraisal	Date:							
Cutting	Permit:	Crown Grant	-	Effective	Date:	850201						
Location	n:	Robson Big	nt	Forest Dis	trict:	Campbell	River					
Approved	d Cruise:	1		Tenure:		1						
y=1,	n=0)			TFL & FL	. = 1							
Net Volu	ume, m3	27426		TSL	= 2							
Area, h	a:	34.8		Marketer:		1						
Side Slo	ope, %:	20.2		Major=1,	Small=2	1						
Terrain	Code:	1.55		Term, yrs:		1						
Log Vol	. 10m, m3:	0.75		Annual Vol	uae, a3:	27426						
Log Vol	.(scale):			Annual Op.	Days:	180						
Net Vol.	/tree, m3:	1.19										
Grade,	7:	Balsam	Cedar	Cypress	Fir	Hemlock	Pine L.	Spruce	Pine W.	0/5	Total	
Peeler	A				0.0							
	8				0.0							
	С	10.0			20.0			6.0				
Lumber	D	5.0	5.0	0.0	0.0	1.0	0.0	6.0	0.0			
	F		3.0	0.0				1.0				
Sawlog	Н	20.0	24.0	0.0	34.0	6.0	0.0	20.0	0.0			
	I	31.0	13.0	0.0	11.0	29.0	0.0	20.0	0.0			
	J	24.0	22.0	0.0	26.0	50.0	100.0	32.0	0.0			
Shingle	· K		8.0									
	L		13.0									
	Ħ		5.0									
Utility	X	10.0	5.0	0.0	9.0	13.0	0.0	15.0	0.0			
Chi p&Sa	ı⊭ Y	0.0	2.0	0.0	0.0	1.0	0.0	0.0	0.0	100.0		
Total %		100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0		
Total N	let Vol, m3	s: 6590	714	0	1342	10375	28	6459	0	1918	27426	
Decay,	7. :	8.2	19.4	6	3.5	3	0	1.2	0	1.4	4.4	
Slope C	lass, %	0-4	5-14	15-24	25-34	35-44	45-54	55-64	65-74	75-84	85-94	>=95
such A feet	100		26	3	3	3	3	2	1	2	i	7
*****	********	*********	*****	********	*******	*******	********	*******	********	********	*******	*******

	1	TRUCTION CO				1111111111		KIZKIZKE.	1121111111	. * * * * * * * * * *	} **********	age 2
	ence:	*********		R1 Lot 2	23	Cutting F	ermit:	Crown Gra				******
Va:	luae, a	i.		27426		•						
Hic	hway t	rucks	1									
Of:	-High	ay trucks	2	2								
Fre	oht-Enc	Loader	1									
Hee	Doca	Loader	2	1		Road Widt	h, a:	4.9				
S	ection	Const.	Side	6rade	Rock	Ballast	Ballast	Pit	Ballast	End	Ball. Haul	Grade
Į	Length	Type B/H=1	Slope	Rock	Hardness Soft=1	Type Gravel=1	Haul Distance		Hardness S/M=1	Haul	Road Elev.	Pit Elev.
	ka	Cat=3	7.	X.	M/H=2	Rock=2	ka	2-4	Ha <i>r</i> d=2	ķa	2	1
* *	*****	*********	********	*******	*******	*******	********	*******	********	*******	********	******
	1.43	1	1.5	0	1	1	i	3	1		10	50
	0.45	1	6.5	2	1	. 2	2	: 3	1		50	50
	0.18	1	44	35	2	2	2	4	1		150	50
	0.09	1	83	60	2	2	2	. 4	1		150	50
	0.15	1	83	75	2	2	2	4	i		200	50

1		Const. Category		Volume	Average Gradient	Basic Cost B/H	Ballast Cost	Ballast Cost	Total Cost	Section Cost
	k m	1-6	盘	43	7,	\$/ka	\$/#3	\$/km	\$/km	\$
****	***	********	*******	*******	******	******	******	*** * *****	******	********
1.	43	1	1	6800	-4	7.1	1.73	11778	18878	26995
0.	46	2	0.9	5580	0	12.2	6.74	37587	49787	22902
0.	19	3	0.4	3540	5	25.6	6.74	23845	50445	9080
0.	09	4	0	0	5	49.9	6.74	0	49900	4491
0.	15	<u> </u>	0	0	8	62	6.74	0	62000	9300
AL THE THE PARTY OF THE PARTY O	0	1		0	0		0.00	Û	0	0
THANKS WILL	0	1		0	0		0.00	0	0	0
W. Charles	0	1		٥	0		0.00	Û	0	0
Attended Paristic	Û	1		0	0		0.00	0	0	0
W-m-m-w	Ò	i		Û	0		0.00	0	Ű	Ú

verts:								Page
ainage Class		Type	Diam	Length	Number	Cost	Tot.Cost	
				a		\$	\$	
Cross Drains		Metal	500 8#		8	2480		
Seasonal/small	streams	₩ood	.75 m2		0	Û		
Intermed/medium	streams	Wood	1.5 m2		1	630		
Perennial/large	streams	Wood	3.75 m2		1	980		
Other installat			600	10	0	0		
· · · · · · · · · · · · · · · · · · ·			900		0	0		
**			1220		0	0		
Special install	ations						4090	
dges:								
Location		Share	Crib ht	Span	Number	Cost		
riadrike riberaturnaan		Ratio	â	最		\$		
Tsitika River		0.01	9	21	1	577 0		
					Ų	-		
						0		
						0		
Particular discounts						0	577	
Special instal!	iations						3//	
scellaneous Deve	elopaent (Costs:						
						0		
						0		
The state of the s						0		
na n					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	•	*********
VELOPMENT COST		********	********	*******	********	******	*******	**********
 	Distance	- Average	Total	Unit				
*I AND THE STATE OF THE STATE O			Cost					
- CANADA CONTRACTOR CO	Kä	\$/ka	\$	\$/@3				
 	*******	*******	*********	*******				
ads	2.31	31501	72768	2.65				
llverts			4090	0.15				
ridges			577	0.02				
scellaneous			Û	0.00				
dtal Development		0.5						
	* * * * * * * * * * * * *	XXXXXXXXX	***IIIIII	} * * * * * * * * * * * * * * * * * * *				

OPERATING COSTS SU	•			ixilitet.		Page 4A
Phase		Volume	Volume		ended	Trended
7 11		% of Tot	#3		Prorated	Cost
770.7		# U1 :UC	MA.	2117.	1101500	2035
Development						
Roads (km)	2.31	100	27426	1.41	1.41	1.53
Landings (#/km)	1	100	27426	0.14		0.16
Ldgs. H/C (m2)	Û	0	0	0.00		0.00
Skid Trails				0.00		0.00
Fell & Buck		100	27426	3.52		3.82
Blowdown Area,ha	. 0					
Affected I	0					
Yarding						
High Lead Spar		20	5485.2	6.34	1.27	1.39
Skyline		0	0	0.00		0.00
Grapple		40	10970.4	5.23		2.27
Helicopter S-t-W	ľ	0	0	0.00	0.00	0.00
Helicopter S-t-T		Ú	0	0.00	0.00	0.00
Skidding, FELdr.%	40	0	0			
RTLS (T/L=1)	Û	40	10970.4	3.46	1.39	1.50
RTGS		0	0		0.00	0.00
STLS		0	0		0.00	0.00
Loading		0	0			
Heelboom		60	16455.6	4.06	2.43	2.64
Front End		40	10970.4	1.02	0.41	0.44
Hauling (one type	only)					
Highway (m3/1d)		0	0	0.00	0.00	0.00
On-Off Highway		0	0	0.00	0.00	0.00
Off-Highway	0	100	27426	1.46	1.46	1.58
Cycle time:	Dist.	Loaded	Empty	Time		
wa francisco	k na	kph	kph	min		
Branch	1.0	10	15	10		
Mainline	0.8	25	35	3		
Highway	0.0	Û	0	0		
Loading time		.a3)	0.8	29		
Unloading time				15		
Unavoidable de	lay			15		
Total time				72		
Swinging (km)	0.0	0	0	0.00	0.00	0.00
Road Mtce. (km)	1.8		27426	0.59		0.64
Spring open (km)		100	27426	0.00		0.00
Dump/Sort/Boom/Sc.				3.01	3.01	3.27
(System # 1-6)	3					
Rehaul, RTT min	0					

hase		Volume	Volume	Untre	nded	Trended
later Transport						
From: Robson Bight	t					
To: Gambier						
Rate, \$/m3:	2.11					
Towing				0.00	0.00	0.00
Barging				2.11	2.11	2.29
Lake Tow, ka:	0	0	0	0.00	0.00	0.00
Qwikeno Transfer:						
Machmell		Û	0	0.00	0.00	0.00
Sheemahant		0	0	0.00	0.00	0.00
rew Transport				3.37	3.37	3.65
Crummy, RTT min	110					
Town Run, RRT min	111					
Commuting Crew,%	100					
Boat Crunmy, RRT	0					
ano				0.55	0.55	0.50
\$hop/Office only	1					
Crew size, #	0					
Camp Occup'cy, #	0					
\$ingle Occup. #	0					
Cookhouse loss				0.00	0.00	0.00
Remote Op. yes=1	0			-0.29	-0.29	-0.3
\$ite Specific, \$	0			0.00	0.00	0.00
]verhead						
6en.& Admin.				2.55	2.55	2.77
Operational				6.41	6.41	6.9
iscellaneous					0.00	0.00

OPERATING COSTS SUMMARY, \$/m3	Page 4
######################################	ER1 Lot 223
Cutting Permit:	Crown Grant
Forest District:	Campbell River
Ldcation:	Robson Bight
Appraisal Date:	850731
Effective Date:	85 0201
Volume, m3:	27426
Area, ha:	34.8
	Width with min only one diff was took tool took too any van per van too and also also also also.
Phase	\$/a3
	* E 2"
Development	1.55
Felling & Bucking	3.52
Yarding	3.36 1.39
Skidding	1.39 2.84
Loading	2.84 1.46
Hauling Swinging	0.00
Road Maintenance	0.59
Dump/Sort/Boom/Scale	3.01
Water Transport	2.11
Owikeno Transfer	0.00
Crew Transport	3.37
Camp	0.55
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	8.96
Miscellaneous	0.00
132 45 5 4 411 5 6 6 6 6	A* 5A
Total Untrended Op. Cost	32.41
Trend Factor	1.0849
Total Trended Op. Cost	35.17
*********	*********

VANCOUVER FOREST REGION S		CULATION			Licence:		ERI Lot 2	23		Page 5
Forest District: Campbel					Cutting F		Crown Gra			
Appraisal Date: 85073		Volume:	27426		Location:		Robson Bi	-		
****************	*********	*******		*******	********	*******	********	(********	*******	*******
		_	\$/H3							
and a subsequent of the subsequence of the subseque	Balsam	Cedar	Cypress	Fir	Hemlock	Pine L.	Spruce	Pine ₩.	0/5	Total
Pro-rated Selling Price	44.28	61.86	0.00	53.75		17.90	72.22	0.00	35.17	
Prþfit/Risk Ratio	0.14	0.14	0.00	0.14			0.14	0.00	0.14	
Discount Value	38.84	54.26	0.00	47.15		15.70	63.35	0.00	30.85	
Operating Costs	35.17	35.17	0.00	35.17	35.17	35.17	35.17	0.00	35.17	
Conversion Return	9.12	26.69	0.00	18.59	5.06	-17.27	37.06	0.00	0.00	
Indicated Stumpage	3.48	19.10	0.00	11.99	0.12	-17.46	28.19	0.00	-4.32	
Profit/Risk	5.44	7.60	0.00	6.60	4.94	2.20	8.87	0.00	4.32	
Valuation Factor	0.40	0.72	0.00	0.64	0.02	0.00	0.76	0.00	0.00	
Upset Stumpage	3.68	19.10	0.00	11.99	3.22	1.43	28.19	0.00	2.81	
Pro-Rate %										
Pro-Rate Value, \$/m	3									
Bonus Bid, \$/a	3									
Final Stumpage	3.68	19.10	0.00	11.99		1.43	28.19	0.00	2.81	
Royalty rate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Final Stpg.less Royalty	3.48	19.10	0.00	11.99	3.22	1.43	28.19	0.00	2.81	
Base AMV, \$/a	3 44.28	61.86	0.00	53.75	40.23	17.90	72.22	0.00	35.17	
Small Operator Indicator	NA	NA	NA	NA	NA	NA	NA	HA	NA	
Code Type:	5							ı		
Volume a	3 6590	714	ŷ	1342	10375	28	6459	0	1918	27426
Total Upset Value,	\$ 24232	13635	0	16085	33387	40	182061	0	5396	274836
Total Conversion Return,	\$ 60069	19059	0	24944	52492	-483	239349	0	0	395429
Total Indicated Value,	\$ 24232	13435		16085				0	-8283	228424
****************	*********	*******	*******	*******	********	*******	********	********	******	********

FOREST MANAGEMENT MODEL - AREA: MacMillan Bloedel

TYPE: All 1985 Value of Future Crops Crown Grant Lot 223 - Tsitika

1985 \$			Subsequent	Rotations		
	1985	2055	·			
Rotation Years		70				
Final Cut Year	1985	2055				
Years to Discount	0	70	0	0	0	Û
Inflation Rate	0	0	0	0	0	0
Cumulative Inflation Factor	1	1	1	1	1	1
Real Logging/Forestry Chge.	0.025	0.025		0.025	0.025	0.025
Cumulative Log.Cost Factor	1	5.63		1.00	1.00	1.00
Real Log Value/Ann.cost Change	0.025	0.025	0.025	0.025	0.025	0.025
Cumulative Log Value Factor	1	5.63	1.00	1.00	1.00	1.00
Real Milling Cost Change	0	0	0	0	0	0
Cum.Milling Cost Factor	1	1.00	1.00	1.00	1.00	1.00
Real Lumber Price Change	0	Ò	0	0	0	0
Cumulative Lbr. Price Fact.	1	1.00	1.00	1.00	1.00	1.00
Real Chip Value Change	0	0	0	0	0	0
Cumulative Chip Value Fact.	į	1.00	1.00	1.00	1.00	1.00
Tax Rate	Û	0	0	0	0	0
Discount Rate	0.04	0.06	0.06	0.06	0.06	0.06
ALT.# 1: INTENSIVE FORESTRY:						
Harvest Volume:	1985	2055	0	0	0	0
Merch S/L Volume	0	1	0	0	0	(
Merch Pulp Log Vol.						
Selling Price:	1985	2055	Ò	Ű	0	0
S/L Selling Price		395429	0	Q	0	(
S/L S.P. Adjustment Pulp Log S.P.	0	2227097	0	Ů	0	0
P/Log S.P. Adjustmnt	0.00	0.00	0.00	0.00	0.00	0.00
Lumber Recovery, Lumber S.F.			****	••••		
Lbr.S.P. Adjustment	A 66	0.00	0.00	0.00	0.00	0.00
Lumber S.P.	0.00	0.00		0.00	0.00	0.00
Chip Value, Current	4.44	0.00	4.00	0.00	4.44	V.V.
Chip Val. Adjusted	0.00	0.00	0.00	0.00	0.00	0.00
Chip Recovery Factor	V1.VV	V. 00	0.00	V. VV	V. 00	0.00
Chip Sales Value	0.00	0.00	0.00	0.00	0.00	0.00
Total Selling Price	0.00	2227097		0.00	0.00	0.00
OPERATING COSTS:						
Tot.Log Cost.Current						
Log Cost, Time Adj.	0.00	0.00	0.00	0.00	0.00	0.00
Milling Cost, Curr.						
Milling Cost, Adj.	0.00	0.00	0.00	0.00	0.00	0.00
Chipping Cost, Curr.	****	****	****	****	****	- 4 W V
Chipping Cost, Adj.	0.00	0.00	0.00	0.00	0.00	0.00
Admin.Sales,Corp.O.H.	4 \$ 4 4 4	4144	****	4144	****	4144
Admin.Etc. Time Adj.	0.00	0.00	0.00	0.00	0.00	0.00
Total Operating Cost	0.00	0.00	0.00	0.00	0.00	0.00
CONVERSION RETURN:	0	2227097	0	0	0	(

TYPE:	All		of Future	Crops	MacMillan Blos Crown Grant Lo	ot 223 - Ti		
	. was dan		1985		Subsequent Ro			
	EVALUATION							
	INCOME	•	0	2227097	0	Û	0	0
Plant: Brush Spaci: Fertil Road	litation ing/Seeding Control							
	•	er 14% of Stp	g value	38477				
Total F	orestry Cost	<u>t</u>	0	38477	0	0	0	0
Total Fo	prestry Cost	., Adj.	0	216707	0	0	0	0
	Etc. Ann.Co estry Incent	ost tives Etc.	403.16					
	Incentives		0	0	Û	Û	0	0
TAXABLE	INCOME		-403	2010390	0	0	0	0
	ax Earnings		-403	2010390	0	0	0	Ō
	- New Cap.II ow After Tax		-403	2010390	0	0	0	Û
Pres.Va	lue of Fut.	Flow A.T. Ann.Costs ow A.T. \$		37396	i 0	0	Û	0

1 }))) 7)))) } ^}))))) 110 03 76 COMM. OWN. 1985 840 SUB DESINGT 01/01 TEMPOLECOMY (V) PROMOTED OF VIOLES MALES OF ADDRESS. The street of th 0000 COMPLETE BELOW
LATER CEBRILLY TAX
ANOLHET FROM EINER
LINE A OR B OC C 1985 (If IS AN OFFENCE TO MAKE FASE APPLICATION FOR A HOME OWNER GRANT)
If is year a large or or all and one to the control of the DWNER OR SPOUSE OR RELATIVE OF DECEASED DWNER 4 ACO DELINQUENT TAKES (IF ANY) HOTE A NAME OF TAXETS FOR A ROUGHERST TO CLILL THE HOME DOGGED BY TO CLILL THE HOME DO 2001 | MM (27 XX3) | 2004 | MM (11 XX | 31) | 3000 MOV (11 MM OA COOK BY WIF COOK ALDED PREMALEY HE ASKED ENTER TOTAL PAYMEN Annex (a) handeraped persons theorie available the Charactered Armidelle Necone for Mand Act.

(b) an ellowance unider the Ker Fereiran Articlescena Act (Chieda),

(c) an ellowance unider the Cincian Mar Pensions and Allewances Act (Cenada, or

(c) an emblast existing a strategy to my populated deathing. MORIGAGE NO. NEW OWNER A ANGEL FOR DESCRIPTION IN THE SERVENT OF THE THE SERVENT OF SERVENT THE ANGEL SHIPLE TO SERVENT OF THE PERSON OF SHIPLE THE ANGEL SHIPLE TO SERVENT OF THE 4 () NO PAYMENT 20.10 403-16 PREPAYMENT MIG NO PROPERTY TAX RETURN CHANGE OF ADDRESS OR OWNERSHIP SINIBART OF CARRENT FALS FARAUL AKSS PROPART TAX ANNUALI CIL 785 29021-400-1-7 **\$** ME TAXES IF ELICIBLE FUR RECEIVE AN CHANT • 0 • 0 • CAUSS LANES IF NOT LEAGUES FOR GRANT THUNSACTEMENT DATE TO MACMILLAN BLOEDEL TIMBERANDS & PROPERTIES DAV 1075 W GEORGIA ST VANCOUVER B C DELINIAGINT TAXES BUE INCLUBING BRIERES!
IF PAID DY THE INDICATED DATES 3 * Z XPLANATION FIELD 021 APPLICATION FOR HOME DWHER GRANT AOD AOD Minstry of France #F: NAMBATIVE LEGAL DESCRIPTION A KON CANCELLE CHECHE ON MINKY ON THE COPT IS YOUN PAYMENTS TO COMP TO SAME THE COPT IS YOUN FOR PAYMENTS THE CORTE OF PAYMENTS THE CORTE TO THE COPT OF THE THE CORTE TO THE TO THE CORTE H YOUR CONVERGENCE, PAYNE DAY ALSO HE MADE AT
E. OFFICE OF YOUR EUCH
VEHINLENT AGEN? NON BESTIENTS OF CANADA
 PREASE PAY IN CANADAM DON.
 LAM MONEY OFFICE IN SAME
 DIAGE T BIAMA ON A CANADAM
 DANK OH THE EQUIVALENT IN
 US FAHOS A \$1000 SERVICE FEE WAS BE CHANGED FOR DISHOHOUMED CHEORES MANE YOUR CHECKE OR MONEY ORGEN PAYABLE TO THANKE THE MINISTER OF FINANCE. DL: 223 IREE FARM 21 PHUSANT THIS RETRIBUTED OF THE NOTICE WITH YOUR PAY-MENT CH REAL TO THE SURVEYOR OF TAXES THE COUR STREET BOX 28to INSTRUCTIONS TO TAXPAYER Province of British Columbia YEAH VICTORIA BRITISH COLUMBIA VBW 3GA ρ¥ V6E 3R9 #ENOM 1985 nee No. 198659 C11 785 29021-400-1-7 27.76 15.96 76.16 119.88 MET TAXES PAYABLE IF ELIC RREFOR ANNIMAL CRANT TAX ASSUMES 50726 29160 139160 SUMMARY OF CUTHENT TAXES AND HOME OWNER GRANT
TYPE OF LEVY BY THE STATE TAX RATE PER TOTAL LOCAL SERVICE TAX AMOUNT RETAIN THIS PORTION FOR YOUR RECORDS AC. LOCAL SERVICE LEVIES BY PROPERTY CLASS MT WABDINGTON HOSPA VAN ISLE EIBRARY 85D WW WADDING REG 239-50 239.50 43.78 119.88 403.16 TREE FARM 21 TF: 021 PROPERTY TAX NOTICE LESS H.O. GRANT (APPLIED TO SCHOOL TAX) ADD TAXATION (FURAL AFEA) ACT TAX PAYABLE ADD-LOCAL SERVICE TAXES PAYABLE LESS RESIDIAL H.O. GRANT (IF ANY) TOTAL CURRENT TAXES DUE TOTAL SCHOOL TAX PAYABLE ADD - DELINGUENT TAXES * TOTAL PAYMENT DUE 239.50 43.78 MET SCHOOL TAX PAYABLE 239.50 LESS - PREPAYMENT TAX AMOUNT CCNOX NORTH HACHILLAN BLOEDEL TINBEALANDS C PROPERTIES DIV 1075 W GEORGIA ST VANCOUVER B C A 37 600 ACTUAL WILK TAXATION (RURAL AREA) ACT TAX PAYABLE IMPORTANT - PENALTY DATES
1885 IAKES ARE
504E AND PAYABLE JUL 02-1985 WITH GOSE OF BASHESS JUL OZ. 1985 FORE TAKES AND BEEN TO FICATE IF CONDING OCT 31+1985 1965 TAXES BECOME DELINGRENT - DECEMBER 31, 1985 PENALTY WILL BE CALCULATED ON GROSS OUTSTANDING TAXES AT PENALTY DATES NARRATIVE LEGAL DESCRIPTION TOTAL SCHOOL TAX PAYABLE 5473 YALLE ACTUAL VALUE ADDITIONAL 5% (CONFOMOED) Printer of V6E 3R9 DL: 223 PICKENT CLASS TREE 7 PHOYERTY CLASS TREE 7 HOLMSEN FORESTRY LTD

FIN 548 HEA' 9214

Annex 5 - BANK OF MONTREAL PRIME COMMERCIAL LENDING RATES RELATED TO INFLATION

					··· ···· ···· ···· ···· ···· ··· ··· ·
Lending	Inflation	Real		5-years'	10-years'
Rate	Rate	Rate	Average	Average	Average
5.54	1.27	4.22	4.22		
5.82	1.88	3.87	4.04		
5.75	1.84	3.84	3.97		
5.75	2.41	3.26	3.80		
5.91	3.53	2.30	3.50	3.50	
5.90	3.69	2.13	3.27	3.08	
6.51	4.11	2.31	3.13	2.77	
7.18	4.47	2.59	3.06	2.52	
8.44	3.27	5.01	3.28		
7.15	1.95	5.10	3.46	3.43	3.46
6.10	5.50	0.57	3.20	3.11	3.10
6.37	7.26	-0.83	2.86	2.49	
9.70	11.63	-1.73	2.51	1.62	2.07
10.19	10.98	-0.71	2.28	0.48	1.67
9.79	9.73	0.05	2.13	-0.53	1.45
9.28	7.15	1.99	2.12	-0.25	1.43
8.60	7.84	0.70	2.04	0.06	1.27
11.44	7.67	3.50	2.12	1.11	1.37
14.46	9.38	4.64	2.25		
16.57	14.29	1.99	2.24	2.57	1.02
18.37	10.50	7.12	2.47	3.59	1.67
12.66	5.52	6.77	2.67	4.81	
11.42	4.63	6.49	2.83	5.40	
11.58			3.07		
	Lending Rate 5.54 5.82 5.75 5.75 5.90 6.51 7.18 8.44 7.15 6.10 6.37 9.70 10.19 9.79 9.28 8.60 11.44 14.46 16.57 18.37 12.66 11.42	Lending Inflation Rate 5.54 1.27 5.82 1.88 5.75 1.84 5.75 2.41 5.91 3.53 5.90 3.69 6.51 4.11 7.18 4.47 8.44 3.27 7.15 1.95 6.10 5.50 6.37 7.26 9.70 11.63 10.19 10.98 9.79 9.73 9.28 7.15 8.60 7.84 11.44 7.67 14.46 9.38 16.57 14.29 18.37 10.50 12.66 5.52 11.42 4.63	Lending Inflation Real Rate Rate Rate Rate Rate Rate S.54 1.27 4.22 5.82 1.88 3.87 5.75 1.84 3.84 5.75 2.41 3.26 5.91 3.53 2.30 5.90 3.69 2.13 6.51 4.11 2.31 7.18 4.47 2.59 8.44 3.27 5.01 7.15 1.95 5.10 6.10 5.50 0.57 6.37 7.26 -0.83 9.70 11.63 -1.73 10.19 10.98 -0.71 9.79 9.73 0.05 9.28 7.15 1.99 8.60 7.84 0.70 11.44 7.67 3.50 14.46 9.38 4.64 16.57 14.29 1.99 18.37 10.50 7.12 12.66 5.52 6.77 11.42 4.63 6.49	Lending Rate Inflation Rate Real Rate Average 5.54 1.27 4.22 4.22 5.82 1.88 3.87 4.04 5.75 1.84 3.84 3.97 5.75 2.41 3.26 3.80 5.91 3.53 2.30 3.50 5.90 3.69 2.13 3.27 6.51 4.11 2.31 3.13 7.18 4.47 2.59 3.06 8.44 3.27 5.01 3.28 7.15 1.95 5.10 3.46 6.10 5.50 0.57 3.20 6.37 7.26 -0.83 2.86 9.70 11.63 -1.73 2.51 10.19 10.98 -0.71 2.28 9.79 9.73 0.05 2.13 9.28 7.15 1.99 2.12 8.60 7.84 0.70 2.04 11.44 7.67 3.50 2.12 14.46 9.38 4.64 2.25 1	Rate Rate Average Average 5.54 1.27 4.22 4.22 5.82 1.88 3.87 4.04 5.75 1.84 3.84 3.97 5.75 2.41 3.26 3.80 5.91 3.53 2.30 3.50 3.50 5.90 3.69 2.13 3.27 3.08 6.51 4.11 2.31 3.13 2.77 7.18 4.47 2.59 3.06 2.52 8.44 3.27 5.01 3.28 2.87 7.15 1.95 5.10 3.46 3.43 6.10 5.50 0.57 3.20 3.11 6.37 7.26 -0.83 2.86 2.49 9.70 11.63 -1.73 2.51 1.62 10.19 10.98 -0.71 2.28 0.48 9.79 9.73 0.05 2.13 -0.53 9.28 7.15 1.99

4.0 APPRAISAL PROCEDURE

4.1 General

Cost and value calculations in this appraisal generally followed the procedures outlined in the B.C. Ministry of Forests' Coastal Log Based Appraisal Manual, effective January 1, 1985. The cost base of the Manual is July 1, 1983. Although the updating of the cost base increased the Logging Equipment Hourly Costs slightly. the revised Trend Factors decreased the total cost allowance by 10 to 15 percent in relation to 1984 appraisals. recognized that the trend factors previously used had been overestimated because of the unexpected rapid decline in The 1985 revisions appear, however, to inflation rates. underallow operating costs somewhat. The appraisal calculations were programmed on a Lotus 1-2-3 spreadsheet for IBM (or compatible) micro computer application.

Although realistic cost estimations and accuracy of all input were important factors in the appraisal, consistency in the application of information and data was the prime objective. With this objective in mind, minor modifications were made to the appraisal calculation procedures when the computer spreadsheet was constructed. Samples of the micro computer program output have been checked against the Ministry of Forests' mainframe computer output and conform closely.

Data input was derived from timber cruise and terrain information collected and prepared by Reid, Collins. Discussions were held with MacMillan Bloedel administrative and operational staff to obtain actual current cost and productivity information. Road development requirements and log market values were assessed by the appraiser as described in the following sections.

Appraisal data input and computer input and output summaries are found in the following appendices:

ER 1 Robson	n Bight	Appendi x	III
ER 5 Muske	g Creek	#	IV
Receive Are	a Schedule	"A"(Equal Value) "	VA
** **	**	" (Equal Volume) "	V B
Crown Grant	Lot 223	(Call Grades) "	VI A
š4 16	**	(Computer Grades) "	VI B

4.2 Field Examination

Maps and aerial photos were carefully examined before visiting each block to identify potential problem areas for closer attention in the field. The aerial (Robson Bight properties only) and ground inspections provided a broad picture of the topographic and timber condition of each block and their relative difficulty in development and logging chance. Particular attention was paid to past and present road construction related to proposed developments. Potential extraction routes for all areas and a log dump location at Robson Bight were also identified.

4.3 Road Development

A map lay-out of the potentially required road development was prepared for each area. Detailed topographic maps were provided by MacMillan Bloedel for most areas. Proposed road locations were drawn with the aid of photos and general impressions from the field observations. The proposed development layouts are strictly hypothetical. Extensive engineering would be required for the preparation of an appropriate logging plan.

The theoretical development was designed for harvesting of all merchantable timber with conventional logging equipment, primarily portable high lead spars and grapple yarders. Each road was identified and the distance measured and summarized by area (Appendix VII).

4.31 Slope, Terrain Group and Construction Category

Slope and terrain information from the cruise data were summarized for each area to form a consistent basis for input to calculate road costs. A program was developed to distribute the total road distance to be constructed over a maximum six possible road construction groups in each area. The average side slope and area distribution for each slope group were calculated and correlated with terrain distribution to determine the road distance to be constructed within each of the six groups (Appendix VIII). The average slope derived from the cruise data was modified to account for the location of roads and landings on lesser than average side slope. A reduction of 0-5 percent was made to slopes less than 65 percent, and a ten percent reduction was made to slopes over 65 percent. Other road construction input data were determined from general field impressions. The road cost summaries are found on pages 2 and 3 of the respective area appraisal printouts. Appendices III to VI.

4.4 Operating Costs

The operational data input for each area is found on pages 4A and 4B of the appraisal printouts. The values selected are based on the appraiser's judgement and investigations as well as on information obtained from MacMillan Bloedel and the Ministry of Forests.

The respective phase costs are computed according to the apprasial manual, incorporating the appropriate trend factor to generate the estimated operating costs as of July 31, 1985.

4.5 Log Market Values

4.51 General

The establishment of log grade distribution and realistic log price levels for all species and grades is possibly the most critical aspect of this appraisal. Projection of historic log prices to a "normal" level during a period of highly fluctuating prices and a depressed economy is difficult. It has been further complicated by the introduction of the letter grades in 1981 which replaced the old industry and statutory grades.

Available data has been carefully analysed and the results thoroughly scrutinized and discussed with MacMillan Bloedel and Canadian Forest Products log marketing specialists. In the opinion of these specialists and the appraiser, the estimates derived are realistic and consistent.

4.52 COFI Log Price Analysis

The Council of Forest Industries' log price records by species and grades were analysed from 1960 to end of June 1985. During this period the log pricing has evolved from \$/MBM through \$/Ccf to \$/m3. Many changes have taken place with the introduction of lumber reject and pulp sorts, and most recently, letter grades. Although the possibility of inconsistency within any one of the grades over such a long period is relatively high, the COFI data is the most complete and reliable data available for Coastal British Columbia.

All individual letter grades that could be isolated were summarized separately. Letter grades that could not be segregated in the historical data were summarized as groups. The data was trended to mid-year 1985 using polynomial as well as natural logarithm curve fitting. The regressions were plotted over the actual price graph without adjustment for inflation (See examples, Appendices IX & X). The trended values were summarized and compared with averages for the last five years; for the first six months of 1985, and with the actual all-time high annual average value.

The grouped grades were prorated to individual grade values using the average last five-year percentage price deviation from the grouped value. The graphs and the log price comparison summary were closely examined to select the closest and most realistic relationship (Appendix XI). Subsequent to the review and general acceptance by the industry log marketing specialists, the selected log values outlined in Appendix XI were used in the appraisal to compute Average Market Values (AMV) by species for each individual area in the timber exchange.

5.0 DETERMINATION OF PRODUCTIVE CAPACITY

5.1 General

The timber exchange includes the replacement of productive capacity lost from Tree Farm Licence # 39 in areas removed for the ecological reserves. The *Productive Capacity Replacement* area is to be included with the Schedule "B" lands of the TFL. Area and forest classification system has been described in detail in Reid, Collins' report. The appraiser has assessed and analysed the data provided, applied yield predictions according to the established site indices, and made appropriate area adjustments to the proposed *Replacement* area. A summary of the productive capacity exchange calculations is found in *Appendix XII*.

5.2 Determination of Site Index

The site index on all areas was determined by Reid, Collins using the "Site Index Curves (Sept. 1979)", contained in the Ministry of Forests, Inventory Branch's Field Handbook (1983). The reference age is 100 years. The Take areas are classified according to the old Ministry of Forests' labelling system, while the Productive Capacity Replacement area is classified according to the new system. The new labelling system and the more detailed photo interpretation and stand typing of the Replacement area has resulted in more refined and detailed information for this area than for the Take areas.

The height/age relationship for determining site index appears to be relatively consistent where the forest stand has reached a free growth stage. In very young stands, however, and where the stand has been subject to suppression from overstocking or a residual overstory, determination of site index becomes less precise.

To ensure consistency, Reid, Collins determined site index on the basis of the primary forest type within the stand. Where a secondary forest type existed in the form of a scattered overstory of residual mature timber, the productive capacity of the site may, however, have been underestimated. The indicated site index for the overstory, was invariably considerably higher than for the immature stand underneath. Low sites, less than S.I. 16 at 100 years, are generally considered inoperable.

Therefore, any type classified lower than S.I. 16 was excluded from the calculation of productive capacity for the area. Some of the immature stands with a scattered overstory of mature timber fell into the low site category. This would not have been the case if the site index had been based on the height/age relationship of the overstory.

Conversely, an overestimation of site index may occur in a mixed species stand such as Douglas fir/hemlock, where the site index is determined on the height dominating fir. An example of this is Type 8C in ER 1, Robson Bight. The estimated site index, correctly derived from the height/age relationship of the dominant/codominant fir trees in the stand, is recorded as 68. This is equivalent to a Mean Annual Increment (M.A.I.) exceeding 21 m3 per hectare per year. Although such a high yield is potentially achievable under intensive forest management and ideal conditions, it is questionable under natural growth conditions and particularly where the site indices of adjacent stands do not exceed 42.

5.3 Yield Table Selection

Yield tables or yield equations applicable to natural stands in the general region were obtained from three sources:

Ministry of Forests: "Forest Inventory Zone "B",

Volume-Age Curve Index by

Growth Type and Site"

MacMillan Bloedel: "Yield Tables for Natural Stands

of Douglas-fir and Western Hemlock"

Crown Forest: "Johnstone Straits Yield Simulator"

The data was compiled using the various yield tables as well as weighted average site indices at 100 and 50 years. The MacMillan Bloedel yield tables were considered most suitable and acceptable for the analysis. The Ministry of Forests' table was restricted to the old classification of Good, Medium, Poor and Low sites, and therefore did not accommodate the detailed site classification available in this appraisal. The Crown Forest yield simulator uses only one culimination age, 77 years, for all sites, and is developed for mixed hemlock-fir types. The summary in Appendix XII compares the various methods investigated in the productive capacity exchange analysis.

6.0 VALUATION AND ANALYSIS

6.1 General

Normal stumpage appraisal calculations, incorporating pro-rated selling prices, profit & risk ratio, and operating costs were completed for all areas. Total upset stumpage value, total conversion return less royalty (if applicable), and total indicated value were calculated for each area. Although conversion return for some species could be negative because of low AMV or high operating costs, the total conversion return for the area was considered the most appropriate measure of value for the timber exchange. The summarized values are found on page 5 of the appraisal print-outs for the respective areas.

Because of the relatively low volumes and value differences involved in the exchange, no discounting of values is warranted.

6.2 Schedule "A" Land Exchange

As it was proven impossible to equate volume as well as value, it is the appraiser's opinion that equal value should weigh more heavily than equal volume in the exchange negotiation. To assist in negotiations, calculations are presented for the equal value as well as the equal volume concept.

Several trial recalculations of the *Receive* area and volume were required to establish the boundaries of the area which would give equal value or volume. Recompilation of log grades and decay factors for the revised area was requested and obtained from Reid, Collins when a close estimate of equal values had been obtained. The coloured area of the map in **Map Pocket # 1** following the Appendices, outlines the area required to equate value. The heavy dashed line indicates the western boundary of the *Receive* area required to approximate equal volume. A new area summary by timber types is printed on the map.

Table 1, below, summarizes the values and volumes calculated for the two options.

Table 1 - Valuation of MB Schedule "A" Exchange Lands

Location	Area ha	Volume m3	Conversion Return, \$
Take	***************************************		
ER1 Robson Bight	315.6	246,162	2,666,317
ER5 Muskeg Creek	<u>80.8</u>	45,742	518 ,4 53
<i>Take</i> Area Total	396.4	291,904	3,184,770
<u>Receive</u> (= Value)	378.8	331,646	3,184,653
Difference(= Value)	-17.6	40,742	-117
<u>Receive</u> (= Volume)	332.2	293,924	2,784,560
Difference(= Volume)	-64.2	2,020	-400,210

The main factors contributing to the value difference if equal volume is considered are:

- a. Substantially lower AMV for hemlock on ER1, Robson Bight, than on the Receive area.
- b. Higher operating costs on the Robson Bight area. Although hauling cost is considerably lower, yarding and crew transportation are much higher at Robson Bight than on the Receive area.

The Appraiser recommends the acceptance of the equal value concept. The Receive Area should be established at 378.8 hectares as outlined on the revised map to provide a replacement volume of 331,646 m3.

6.3 Productive Capacity Replacement

The estimated productive capacities of *Take* and *Productive Capacity Replacement* areas are summarized in Table 2, below. Map **Pocket #** 2 contains the map showing the proposed division of the area. The proposed division line runs parallel to the western boundary at a distance of **1890 meters** east. The western section of the area borders on three sides to TFL # 39. Inclusion of this portion with the TFL was considered the most logical for administrative and operational reasons.

Table 2 -	Prod	luctive	Capacity Replaceme				
	TFL	# 39 ,	Schedule	"B"			
Location	Total ha	Prod ha	Avg.MAI m3/ha/v				
<u>Iake</u> ER1 Robson Bight ER5 Muskeg Creek	334.9 105.7	315.6 80.8	9.32 9.72	2,943 785			
<i>Take</i> Area Total	440.6	396.4	9.40	3,728			
Replacement	602.2	518.4	7,20	3,731			
Difference	161.6	122.0	2.20	3			

It is recommended that an area of 602.2 ha,, as outlined on the map in Map Pocket # 2, be incorporated in TFL # 39, Schedule "B" lands, as Productive Capacity Replacement for areas proposed for Ecological Reserves No. 1 and 5.

The main reason for the additional area requirement to equal productive capacity of the *Take* areas is the lower average site index of the *Replacement* area. As outlined in Section 5.2, the procedures used in determining site index may have contributed to some of the difference.

In practical terms, a slight overestimation of *Replacement* area in favour of MacMillan Bloedel would not have any drastic effect on future annual cuts in the Forest District. It could be beneficial and desirable from a forest management point of view to incorporate the entire old timber licence area of 762.7 ha into TFL # 39. As this will be Schedule "B" lands subject to normal, full stumpage payments, there would be no economic loss to the Ministry of Forests. The narrow strip of Vacant Crown Land which otherwise will remain between two different TFL's will be difficult to administer efficiently.

There is a disadvantage to MacMillan Bloedel to have to operate on a larger area of lower site land. On the other hand, the established road systems will have some future value, and the operating costs could be lower than on the *Take* areas. MacMillan Bloedel would, however, only benefit economically from the existing development and lower operating costs if timber on the area is harvested during periods of minimum stumpages. Present worth of these nebulous values is difficult to quantify and would not be significant. Established advanced growth on the area could have a minor positive effect on TFL # 39's overall annual allowable cut in the intermediate term.

6.4 Crown Grant, Lot 223

The effect of grade distribution on timber value is clearly illustrated in the appraisal of the Crown Grant, Lot 223. At MacMillan Bloedel's request, the Ministry of Forests' letter grades were called and recorded at the time of cruising the property. An estimated total volume of 27249 m3 is concentrated on 34.8 ha of merchantable area.

Standard computerized log grades were also provided in the cruise summary. Valuations, using identical operating costs and volumes, applied to the two different log grade distributions, resulted in about 50 percent higher value for the computerized log grades. It is generally recognized that the computerized grades overestimate the percentage of higher grades and underestimate the amount of lower grades, particularly $\bf X$ and $\bf Y$ grades.

The revised appraisal cost trending allowance may have resulted in a slight underestimation of operating costs on Lot 223. Where the appraisal process allowed the flexibility, minor compensating adjustments were made. Because of the low volume involved, the valuation is not highly sensitive to the effect of operating cost per cubic metre. A one dollar per cubic metre change in operating cost would equal \$ 27,000, or 6 percent of the toatal property value.

Royalties are not payable on fee simple lands. Royalty rates were therefore excluded from the calculation of estimated total conversion return for Lot 223.

As this property is proposed for outright sale, land as well as timber values have been estimated. The bare land value was estimated by John B. Miller, A.A.C.I., to be \$84,600. A copy of the real estate valuation report is found in Appendix XIII.

The value of Crown Grant, Lot 223 is summarized in the following table:

Table 3		Valuation.	Crown Grant,	<u>Lot 223</u>
Log Grading	Method	Timber Value	Bare Land Valu e	Total Value

Called Grades 329,522 84,600 414,122

Computerized Grades 488.698 84.600 573,298

Because of the apparent overestimation using computerized grades, supported by MacMillan Bloedel's request to call grades on the Crown Grant, the value using the called grades has been considered the most realistic for valuation of Lot 223.

Estimated Value, Crown Grant, Lot 223: \$ 414,122

6.5 Capital Gains Taxation

Table 3

Although this is an exchange of timber rights within TFL # 37, it is possible Revenue Canada will consider it a disposal of an old timber licence at current value. If so, the transaction may be subject to capital gains taxation on any value increase since 1971. Such taxation would be an unexpected additional cost to MacMillan Bloedel. The taxation may seem unfair. as the Schedule "A" Receive lands are planned to be logged soon, not disposed of by sale. If the Schedule "A" Receive area were to be part of a future sale of operations and timber lands, the current valuation would be the new base for capital gains taxation. Therefore, any gains between 1971 and 1985 on the exchanged Schedule "A" lands would be subject to capital gains taxation for that period.

6.6 Comments

Any land base removal from an established timber tenure, even though the timber volume or value may be replaced in another location, will result in a degree of disruption to the planning and operation of a company. This may be in the form of reduced volume available to the existing road system, and consequently higher road amortization rates, or additional unwanted traffic on active haul roads, affecting haul speeds and safety. Where some of these negative effects can be quantified and compensated for in the stumpage appraisal allowances, it is a cost to the Crown in terms of reduced stumpage revenues.

Specifically, the Robson Bight ecological reserve will in the long term be very costly to the Crown in terms of lost stumpage revenue. It is estimated that about 270,000 m3 of the annual allowable cut in the Tsitika drainage would otherwise have been transported on favourable gradients and dumped at Robson Bight.

The difference in hauling cost alone is estimated at \$ 2.20 per m3, representing a present worth of about \$ 15 million, using a discount rate of 4 percent. Additional road maintenance cost would increase this by \$ 2-3 million. At positive stumpage rates this would be the present value of future stumpage losses to the Crown from the Tsitika drainage. At minimum stumpage rates, the full operating cost can not be compensated for in the appraisal allowance and will result in a direct additional cost to the companies operating in the drainage, primarily MacMillan Bloedel.

Because of the adverse haul to a 500 meter elevation summit subject to heavy snowfalls in the winter time, operations in the area are restricted to 150 days per year. A favourable haul to Robson Bight would have allowed up to 200 operating days per year providing greater planning and yarding flexibility.

Robson Bight has been identified as the habitat for a pod of killer whales. It is apparent that the whales are not residing there year round. If the periods of the whales' presence in the area could be charted, it should be possible to restrict industrial as well as other disturbing activities in the area during those periods. At other times, during the whales' migration to other areas, controlled activities in the area could be allowed.

7.0 SUMMARY AND CONCLUSIONS

The long term effect and cost to MacMillan Bloedel's operation of TFL # 39 caused by the establishment of the ecological reserves cannot readily be quantified. This appraisal considers only the actual timber value and volume of the exchange. Although the log market pricing is trended to establish a "normal" current price level, some species are appraised at minimum stumpage. Applied to all the timber and MacMillan Bloedel's operation in the Tsitika drainage, it is apparent that the loss of the operational option to transport and dump logs in Robson Bight will have a negative ecomomic effect on future operations in the area. For the same reason, there will be a substantial loss of future stumpage revenue to the Crown.

In the Appraiser's opinion, the equal value concept as applied and recommended in this report, provides a fair exchange of Schedule "A" timber rights. Although there are differences in volume and area exchanged, these factors have little or no practical significance.

The Appraiser believes, that because of the differences in site index determination and type classification between the Take areas and Productive Capacity Replacement area, the required Replacement area may have been slightly overestimated. This is not considered to be critical, as the Schedule "B" land is subject to full appraised stumpage rates. Furthermore, because of the location of the Replacement area, it would be desirable to have the entire old timber licence under TFL forest management and administration.

Because the computerized log grades are generally considered to be less reliable than the called grades, the Crown Grant, Lot 223 valuation was based on called log grades. The called log grades resulted in considerably lower AMV's for some of the species than the computerized grades. The revised appraisal cost trending allowance may have resulted in a slight underestimation of operating costs on Lot 223. Where the appraisal process allowed the flexibility, minor compensating adjustments were made.

In summary, the Appraiser feels an equitable exchange could be effected on the basis of recommendations and considerations made in this report. Determination of long term costs and effects on overall operations, as a result of the establishment of the ecological reserves, were not part of the Terms of Reference. Comments, related to overall operations and Crown stumpage revenues offered in this report, are included for informative purposes only.

Information such as cruise data, appraisal manual, COFI historic log price records, and various yield tables, provided to and used by the Appraiser from other sources have been closely examined for reasonable accuracy. The Appraiser cannot assume responsibility for possible undetected errors contained in these documents.

APPENDIX I TERMS OF REFERENCE

Instructions for Timberland Appraisals required for Ministry of Forests' Exchanges

I Fee Simple Lands

- The objective of the appraisal is to estimate the market value of the properties being exchanged. The appraisals should therefore consider the highest and best use that each property is legally capable of.
- Where the highest and best use of a property is based on growing and/or harvesting timber, an estimated value derived from separate figures for land and merchantable timber should be prepared. If available market evidence provides adequate information to establish a value based on comparable sales, this should also be presented, and the consultant should give his opinion regarding the most relevant figure.
- 3. In preparing value estimates based on separate figures for land and merchantable timber, the method should incorporate the following features:
 - a) land values should be based on comparable sales with due consideration of locality, productivity, and other relevant factors;
 - b) the timber value should be based on the following:
 - the consultant's best estimate of logging costs (and processing costs, if appropriate) as of the date of the appraisal;
 - the consultant's best estimate of average product values over the past market cycle, adjusted, if required, to reflect significant trends or changes in the product values which may be realized over the longer term; prior to averaging historic product prices should be inflated to dollars of purchasing power comparable to those used in estimating logging (and processing) costs;
 - c) in preparing estimates of timber values the appraiser should identify and estimate any other factors, e.g. value to owner, timing of harvest, etc., affecting timber values in the circumstance of the particular proposed exchange.

II Temporary Tenures

- The objective of the appraisal is to estimate the market value of the timber on the existing and new licences being exchanged. The land value in timber production or other uses need not be considered.
- In valuing merchantable timber, the instructions in Sections 3b and 3c above should apply.
- Any cost to the licensee from restrictions and obligations attached to the tenures in question should be considered in the valuation.

APPRAISAL GUIDELINES TIMBER EXCHANGE AND LAND VALUATION TSITIKA ECOLOGICAL RESERVES

Concerted attempts have been made by the Ministries of Forests and Lands, Parks and Housing and MacMillan Bloedel Limited/Canadian Forest Products Ltd., to select candidate areas of:

- 1. equal timber volume and value
- 2. equal productive capacity.

It is the task of the cruising consultant to confirm the equal volume criterion and determine site index information on "take" and "receive" areas. Based on the following guidelines, it is the task of the independent appraiser to:

- With regard to the timber exchange, determine the market value of the "take" and "receive" timber and decide whether the equal volumes are of equal market value.
- 2. With regard to compensation for loss of cutting rights, determine the m.a.i. of the "take" and "receive" areas based on site index information and decide whether the equal productive capacities constitute equal cutting rights as expressed as a dollar figure.
- 3. With regard to compensation to MB Ltd. for its private lot, determine the total market value of land and timber. The land valuation portion should be sub-contracted to a qualified real estate appraiser.

The September 21, 1982 document entitled: "Instructions for Timberland Appraisals required for Ministry of Forests Exchanges" shall form the basis for the appraisals of land and timber, with the following clarification ${\cal S}$.

- 1. The appraisal will be on a species by species basis.
- Values shall be determined by property and species, based on, but not limited to site specific selling price and logging cost estimates.
- 3. The date of valuation shall be July 31, 1985.
- 4. If the use of a discount rate is recommended to represent net present timber values, the appraiser shall recommend an appropriate rate and provide justification for its use.
- 5. The appraisal will assume no real growth in timber values or logging costs over the future harvesting period.

SCHEDULE "B"

SUBCONSULTANTS TO BE USED ON THIS JOB

John B. Miller, A.A.C.I. of D.R. Coell & Associates Inc. 203 - 3347 Oak Street Victoria, B.C. V8X 1R2

APPENDIX II

PHOTOS

Photo # 1 - MB - ER 5 Muskeg Creek Foreground - SW View

Photo # 2 - MB - Receive Area, Western Portion Right Background - NW View

APPENDIX III

APPRAISAL SUMMARY

TAKE AREA, ER 1 ROBSON BIGHT

850731 ERI TEL 39 Aptraisal Date: Effective Date: 850201 Cutting Permit: Take Area Location: Robson Bight Forest District: Campbell River Approved Druise: 1 Temure: TFL & FL = 1 (v=1, n=0. Met Volume, mJ TSL = 2 246162 Area. ha: 315.6 Marketer: 43.2 Side Slope, % : Major=1. Small=1 ..84 lerα, yrsi Terrain Code: 0.88 Annual Volume, #J: 82054 Log Vol. 10s, all Log Vol. (scale): Annual Op.Days: 180 1.7 Net Vol/tree, m3: Srade, 2: Balsan Dedar Cypress Fir Hemlock Pine L. Spruce Pine W. 0/8 Total 11.2 Peeler A 15,7 11.7 0.5 18.7 Lumber D 0.7 12.1 0.0 a.0 2.1 0.0 0.2 0.0 7.9 0.3 6.0 7.9 Sawlog H 20.8 3â.(0.0 7.8 0.0 17.4 9.0 29.9 17.4 14.5 22.0 0.0 15.9 9.0 4.0 20.7 75 E 53.7 17.1 0.5 140.0 74.7 0.0 Sming.e K 0.0 16.1 7,4 5,4 Utility X 5.1 ...5 5.0 17.6 0.0 4 5 6.0 0.1 Chip&Sa* Y 0.0 9.2 0.0 1.5 0.0 100.0 0.3 û.Û Total % 100.0 100.0 100.0 ŷ. 9 100.0 100.0 100.0 0.0 100.0 0 29418 112528 Total Net Vol. m3: 34851 288 40920 1327 25830 0 246162 7.8 Detay, % : 2.3 0 26.6 2.7 1.7 Q 4 5 65-74 Slope Class, % 0-4 5-14 15-24 25-34 35-44 45-54 55-54 75-84 100 16 14 13 6 11 16 12 ** 7 · ·

ROAD CONST	TRUCTION CO	1818								3	Page 2
*****	********	*******	******	*******	*******	******	*******	******	******	*********	******
Licence:	cence: ER1 TFL 39		9	Cutting F	erait:	Take Area	Ž				
Volume, m	∾ <u>5</u> ພ 5		24a161								
Highway to	rucks	÷									
Off-Highw	av trucks	₽-, •	2								
Front-End	Losder	÷									
Heelboom Loader		2	1	. Road Width, a		th, Æ:	4,9				
Section	Const.	51 de	Srade	Kock	Ballast	Ballast	711	Ballast	End	Ball. Haul	Grade
Length	Type	Slope	Rock	Hardness	Type	Haul	Class	haroness	Haul	Road	Fit
-	B/H=1			Soft=1	Gravel=1	Distance	Gravel	S/M=1		Elev.	Elev.
KE	Cat=J	7,	**	善/出产]	Rack=2	x.商	2-4	Hard=l	₹ 額	#	•
*******	********	* * * * * * * * * *	*****	*******	******	*******	******	*********	*******	*********	******
5.38	1	8	15	**;	2	2	4	1		50	50
0.77	1	13	25				. 4	1		100	5 0
4.15	1	45	50				4	1		150	50
1.08	ĭ	79	ప్					1		200	50
1.23	1	79	90	2	2	2	Ę			206	50

Section Length	Const. Category	Eallast Depth	Ballast Volume	Average Gradient	Basic Cost B/H	Ballast Cost	Ballast Cost	Total Cost	Section Sost
€,5	1-6	4	63	h h	多子说的	\$/@3	\$/64	\$/\$2	Ş
*******	*******	******	*******	*******	******	*******	********	******	*******
5.38	3	0.9	5580	Ú	18.4	6.74	37587	55987	301209
0.77	3	0.9	5580	3	18.4	5.74	37587	55987	43110
4.15	4	0.3	1680	5	39.5	6.74	11316	50816	210838
1.08	5	Û	0	8	62	6.74	Û	62000	66960
1.23	6	0	0	8	70.9	6.74	Û	70900	87207
Q.	*		0	0		0.00	0	Ú	Ÿ
Û	1		ŷ	()		0.00	0	0	ŷ
0	**		Û	Q		0.00	ŷ	0	û
Q	1		0	0		0.00	0	Ó	0
¢	1		0	0		0.00	Ű	\$	Ú

iverts:						
ainage Class	Type	Diam	Length	Number	Cost	Tot.Cost
			ā		\$	
Cross Drains					19530	
Seasonal/small streams	WOOG	.75 ∎2			42 00	
Intermed/medium streams	Wood	1.5 m2		3	1890	
Perennial/large streams	Wood	3.75 #2			1960	
Other installations		600		Û	0	
	Metal	900		Û	0	
	Metal	1220		()	ŷ	
Special installations						27580
idges:						
		Crib ht	Casa	Market	(med	
Location		E IO AC		11 在新几 <u>亿</u> :	\$	
Tsitika River	0.03	Ŷ	21	į	1731	
				ŷ	0	
					0	
					Ĉ	
					Ş	
Special installations						1731
scellaneous Development (losts:					
					0	
					0	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 			*********		0	•
VELOPMENT COST SUMMARY	*******	*********	******	*****	******	*********
tem Distance	- Average	Total	Unit			
	Cost	Cost	Cost			
	\$/款裔	\$	\$/m3			
ka			* * * * * * * * * * *			
	******	*******	*****			
£ # # * * * * * * * * * * * * * * * * *		709375	2.88			
######################################			2.88			
**************************		709375	2.88			

ROAD CONSTRUCTION COSTS

**************************************			H., Y.,	k1 A		7
Phase			Volume	Untre Unit F		
		i of Tot	83	UNIE F	rorateo	Čast
Development						
Roads (km)	12.51	100	246162	3.00	J.00	3.26
Landinos (#/km)	2	100	245162	0.27		0.29
Logs. H/C (#2)	()	Ú	0	0.00	0.00	0,60
Skid Trails				0.00	0.00	0.00
Fell & Buck		100	246162	J.40	3.40	3.69
Blowcown Area,na	Û					
Affected :	Ü					
Yarding						
High Lead Spar		50	123081	o.4c	3.23	J.51
äkyline		20	49232.4	7.18	1.44	1.56
Grapple		30	73848.6			1.00
helicopter S-t-₩		Ü	(0.00	0.00	0.00
Helicoater S-t-T		Ş	0	0.00	0.00	0.00
Skidding, FELor,%	Ò	Û				
RTLS (T/L=1)	Û	0	ŷ	0.00	0.00	0.00
RT65		Û	Q		0.00	0.00
STLS		Û	Û		0.00	0.00
Loading		Û				
Heelooom		100	246162	2.99		
Front End		0	Û	0.00	0.00	0.00
Hauling (one type o	nlv)					
Highway (m3/ld)		Û		0.00		0.60
ûn-Off Highway		0	Q.	0.00	0.00	0.00
	0		246162		1.84	2.00
Cycle time:	Dist.	Loaded	Empty	Time		
	《春	Kph	kph	816		
Branch	2.6			18		
Mainline	1.0			4.		
Highway	0.0	0	Ů	Ů.		
Loading time (Log avg.	, a3)	0.9	39		
Unloading time				15		
Unavoidable del	ay			15		
Total time				92		
Swinging (km)	0.0	()	Û	0.00	0.00	0.00
Road Mtce. (km)	3.6	100		0.66	0.66	0.72
Spring open (km)	0	100	246162	0.00	0.00	
Dump/Sort/Boom/Sc.				3.01	3.01	3.27
(System # 1-6)	3					
Rehaul, RTT min	0					

OPERATING COSTS SUMMS	OPERATING COSTS SUMMARY, \$/63									
************	*****	*******	* £ * £\$\$ * \$	*******	*****	*******				
Phase		Volume	Volume	Untre	nded	Trended				
Water Transport										
From: Robson Bight	Į.									
To: Gambier										
Rate, \$/m3:	2.11									
Towing				0.00	0.00	0.00				
Barging				7 11	2.11	7.75				
Lake Tox, ka:	0	0	ŷ	0,00	Q.00	0.0 0				
Owikeno Transfer:										
Machaell		Ú	Q.	0.00	0.00	0.00				
Sheemahant		Ç	0	0.00	0.00	0.00				
Grew Transport				4.30	4.36	4.75				
Crummy, RTT min	110									
Town Run, RRT min	111									
Commuting Grew.%	100									
Boat Crummy, RRT	ĝ.									
ûa#Ş				0.55	0.55	0.60				
Shop/Office only	1									
Crem Size. #	Q									
Camp Occupicy, #	Ú									
Single Occup. 🕏	Û									
Cookhouse loss				0.00	0.00	V.06				
Remote Op. ves=1	Q.			-0.29	-0.29	-0.31				
Site Specific, \$	Û			0.00	0.00	0.00				
Overhead										
Sen.& Admin.				2.55	2.55	2.77				
Operational				5.41	5.41	6.95				
Miscellaneous					0.00	0.00				
************	*****	******	*******	****	******	*******				

Canada Janas

Sandan and Sandan

OPERATING COSTS SUMMARY, \$/a3	řage 4
*****************	*****************
Licence:	ER! TFL 39
Cutting Permit:	Take Area
Forest District:	Campbell River
Location:	Robson Bight
Appraisal Date:	35 0731
Effective Date:	850201
Volume, m3:	246162
hrea, hai	7 € £ . 3 £ 4 €
Phase	\$/20
married and the second the second to	***
Development	3.27
Felling & Bucking	3.40
Yarding	\$.24
Skidding	0.00
Loading	2.99
Hauling	1,84
Swinging	0.00
Road Maintenance	Ú. 55
bums/Sort/Boss/Scale	J.01
Water Transport	2.11
Öwikend Transfer	0.00
Crew Transport	4.Ja
Lass	ે.53
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	8.96
Miscellaneous	0.00
Total Untrended Op. Cost	37.86
Trend Factor	1.0849
Total Trended Op. Eost	40.20
************	######################################

A.A. Portured de

Caracagana and a

1

Algorithm and the second

VANCOUVER FOREST REGION STU Forest District: Campbell (CULATION			Licence: Cutting P		ERI TFL 3 Take Area			Page 5
Appraisal Date: 850731		Volume:	246162		Location:		Rooson Bi			
*****************	********			*******	********	*******	********	********	*******	*******
			\$/M3				_			
	Balsa n	Cedar	Cypress	Fir	Hemlock	Pine L.	Spruce	Fine W.	0/5	Total
Pro-rated Salling Price	47.41	61.90	0.00	72.93	39.90	17.90	75.81	0.00	40.20	
Profit/Risk Ratio	0.14	0.14	0.00	0.14	0.14	0.14	0.14	0.00	0.14	
Discount Value	41.59	54.30	0.00	63.97	35.00	15.70	66.50	0.00	35.26	
Operating Costs	40.20	40.20	0.00	40.20	40.20	40.20	40.20	0.00	40.20	
Conversion Return	7.22	21.70	0.00	32.73	-0.30	-22.30	35.61	0.00	0.00	
Indicated Stumpage	1.39	14.10	0.00	23.78	-5.20	-24.50	26.30	0.00	-4.94	
Profit/Risk	5.82	7.60	0.00	8.96	4.90	2.20	9.31	0.00	4.94	
Valuation Factor	0.19	0.65	0.00	0.73	0.00	0.00	0.74	0.00	0.00	
Upset Stumpage	3.79	14.10	0.00	23.78	3.19	1.43	26.30	0 .0 0	3.22	
Pro-Rate 1										
Pro-Rate Value, \$/m3										
Bonus Bid, \$/m3										
Final Stumpage	3.79	14.10	0.00	23.78	3.19	1.43	26.30	0.00	3.22	
Royalty rate	1.20	1.50	1.50	2.00	1.20	0.80	2.00	0.80	0.50	
Final Stpg.less Royalty	2.59	12.60	0.00	21.78	1.99	0.63	24.30	0.00	2.72	
Base AMV, \$/m3	47.41	61.90	0.00	72.93	39.90	17.90	75.81	0.00	40.20	
Small Operator Indicator	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	
Code Type:	5									
Volume m3	34851	40920	0	29418	112528	288	26 8 30	0	1327	246162
Total Upset Value, \$	90370	515619	0	640 5 88	224148	182	. 651955	0	3604	2126466
Total Conversion Return, \$	209677	826678	0	904058	-168508	-6652	901727	0	-664	2666317
Total Indicated Value, \$	6752	515619			-719884					1080531

(talandasa)

di teritora ferbida

A The second discount of the

Harry Santa Comment of the

// | | (2)

Salar Sa

A Company of the Comp

APPENDIX IV APPRAISAL SUMMARY TAKE AREA, ER 5 MUSKEG CREEK

APPRAISAL DATA SHEET ER5 TFL 39 Licence: Appraisal Date: 850731 Cutting Permit: Take Area Effective Date: 850201 Forest District: Campbell River Location: Tsitika River Approved Cruise: 1 lenure: (y=1, n=0) TFL & FL = 1 Net Volume, a3 45742 TSL = 2 Area, hai 80.8 Marketer: Side Slope, % : 16.1 Major=1, Small=2 Terrain Code: 1.45 Tera, vrs: Annual Volume, m3: Log Vol. 10m, mJ: 1.05 45742 Log Vol.(scale): Annual Op.Days: 150 Net Vol/tree, m3: 2.34 Grade. %: Balsas Cedar Cypress Fir Hemlock Pine L. Spruce Pine W. 0/8 Total feeler A 0.0 0.0 13.2 ŭ.0 0.0 Lumber D 3.1 0.0 0.0 0.0 3.2 0.0 0.0 20.4 0.0 0.0 47.5 5.5 Sawlog H 41.9 ΰ.ΰ Û,Ũ 16.4 0.0 22.6 10.6 37.5 18.3 21.5 0.0 0.0 20.9 27.8 0.0 53.9 11.8 0.0 0.0 30.1 0.0 8.8 26.4 Shingle K 0.0 L 11.2 M 9.2 Utility X 5.8 4.2 4.1 0.0 0.0 11.6 0.0 11.3 Chip&Saw Y 0.2 0.0 ŷ,¢ 1.1 0.0 0.0 0.0 0.0 0.0 Total % 100.0 100.0 0.0 100.0 0.0 0.0 160.0 100.0 0.0 6550 Total Net Vol. mJ: 11940 Ō ý 25200 45742 **\$** 1316 736 Ģ 4.6 Decay, %: 10.4 25.6 0 Û 5.0 Ģ Ç 13.1 6.6 Slope Class, % 0-4 5-14 15-24 25-34 35-44 55-64 65-74 45-54 75-84 85-94 >=95 100 55 23 9 0 9 0 0 Û 0 0 Ą

***|

raue i

ROAD CONSTRUCTION COSTS	Fag≅ 🕽
¥\$	********

Licence:		Ε	R5 TFL 3	ŞĢ	Cutting P	ermit:	Take Are	ž			
Volume, m	٠, ١,		45742								
Highway tr		1									
Off-Highwa	av trucks	2	2								
Front-End	Loader	1									
Heelboom (Loader	2	1		Road Widt	.h. R.	4.9				
Section	Const.	Side	Grade	Rock	Ballast	Ballast	Pit	Ballast	End	Ball. Haul	Brade
Length	Type	Slope	Rock	Hardness	Type	Haul	Class	Haroness	Haul	Road	Fit
•	B/H=1			Soft=1	Gravel=1	Distance	ôravel	S/M=1		Elev.	Elev.
1 S	Cat≃7	a _y	*	M/H=7	Rock=7	k &	7-4	Harm≃7	įл	ı.	ě.

22 C C F F F F F F F F F F F F F F F F F	000000	0.466	The Contract of	0.00	D#11##	M# 5 1 4 4 5		521121	F-3+#	Carr,	- w. w
Length	Type	Slope	Rock	Haroness	Туре	Haul	Class	Haroness	Hàul	Road	Fit
	B/H=1			50ft=1	Gravel=1	Distance				Elev.	Elev.
· Ka	Cat=3	a _r ia	# ₇ / ₄	M/H=2	Rock=2	KÆ	2-4	Hard≃2	Ř.A.	4	6
********	******	******	*****	********	******	*******	*******	*******	*******	\$ 	*****
2.1	i	1.3	Ŷ	1	2	1.5	á	ì		250	300
0.75	1	6.3	٥	\$	2	1.5	Ţ	1		25 0	300
0.3	1	75	15	1	2	1.5	á	1 .		250	300
0.15	1	90	50	1	2	1.5	4	1		25 0	300

•	Category	Ballast Depth	Volume	Average Gradient	Basic Cost B/H	Cost	Cost	Total Cost	Section Cost
K &	1-6	A	ផ្វឹ	is	\$/ka	\$/m3	\$/ Ka	\$/KE	\$
********	********	*******	******	********	*******	*******	********	******	*******
2.1	i	1	6300	-3	7.1	6.61	41671	48771	102420
0.75	1	0.9	5580	-3	8.2	6.61	36909	45109	33832
0.3	3	0.6	3540	-3	20.9	6.61	23415	44315	13295
0.15	4	Û	Û	-3	38.1	6.61	Û	38100	5715
0	į		Ű	Û		0.00	Ů	Û	Û
Q	1		Û	0		0.00	0	Ú	Q.
0	•		0	0		0.00	Ŭ.	0	Ò
Û	į		Ú	0		0.00	Û	Ú	()
ô	÷		0	Ú		0.00	0	Ů	0
Û	1		0	\		0.00	0	Û	0

Culverts:							Page 3
Drainage Class	Туре	Diam	Length	Mumber	Cost	Tot.Cost	
			8			\$	
i. Gross Drains	Metal	500 ma			4 650		
 Seasonal/small stream 	s Wood	.75 m2		2	84€		
3. Intermed/medium strea	ms Wood	1.5 m2		0	(ı		
4. Perennial/large stream	≋s Wood	3.75 #2		0	ŷ		
Other installations	Metal	600	10	û	Ó		
	Metal	700	12	()	Û		
	Metal	1220	14	ŷ	0		
Special installations						5490	
Bridges:							
					_		
Location		Crib ht		Number	Cost		
					0		
				Û	Ò		
					Ú		
					Ű		
					į		
Special installations						Ģ	
Miscellaneous Developmen	t Costs:						
مها مطالب عليه جوان مها الله الله الله الله الله الله الله		-					
					0		
					(
**********	*********	********	*******	********	() *******	() ***********	*********
DEVELOPMENT COST SUMMARY	**						
ltem Distan	ce Average						
	Cost ka ≸/ka						

	.3 4 7049	155261					
Culverts		5490					
Bridges		0	0.00				
Miscellaneous		0	0.00				

160751

Total Development Cost

5.51

Phase		Values	Volume	Shtra	ាជាឧក	Trended
· ** white	<u> </u>	101 101		Unit Pr		Lost
Development						
Roads (km)	5.3		45742	3.51	5.51	
Landinos (#/km)	2	100	45742	0.Ja	0.36	0.39
Logs. H/C (m2)	ij	Û	Ů	0.00	0.00	0.0ú
Skid Trails				0.00	0.00	
Feli & Buck		ίÚΦ	45742	3-31	3.31	3.59
Blowsown Area,ha	Û					
Affected %	Ú					
Yarding						
Migh Lead Spar		άV	27445.1	5.74		
Skyline		Ç.	Ç:	0.00	0.00	
Srapple		4	18196.9	4.55	1.92	1.97
Helicopter S-t-W		Û	Ç	0.00	0.00	
Helicopter S-t-T		0	ŷ	0.00	0.00	0.00
Skidding, FELdr.%	Ú	Ų:	Ú			
R7LS (T/L=1)	Û	Û	Ú.	0.00		
RTBB		Ç	ŷ		0.00	
STLS		Ú	Ų		0.00	0.00
Loadinç		ŷ	(v			
Heelbooa			45742			
Front End		Ģ	ý	0.00	0.00	0.00
Hauling (one type o	7ÎVI					
Highway (m3/1d)		Ç		0.00		
On-Off Highway		0		0.0¢		0.00
	0		45742		3.35	3.64
Cycle time:	Dist.	Loaded	Empty	lae		
	花盘		kph	春紅花		
Branch	1.7		15	17		
Mainline	28.0		45	85		
Highway	0.0	0		ŷ		
Loading time (Log avg.	,#J)	1.1	34		
Unloading time				15		
Unavoidable del	a y			15		
Total time				167		
Swinging (km)	0.0	0	0	0.00	0.00	
Road Mtce. (km)	29.7	25		1.10	0.27	
Spring open (km)	22	25	11435.5	0.la	0.04	
Dump/Sort/Boom/Sc.				3.01	3.01	3.27
(System # 1-6)	3					

OPERATING COSTS SUMM			*******	*******	******	Page 48
Phase			Volume			Trendes
Water Transport						
From: Eve River						
To: Gambier						
Rate, \$/m3:	1.95					
Towing				0.00	0.00	0.00
Barqinq						2.12
Lake Tow, ke:	Q	0	0	0.00	0.00	0.00
ŭwikeno Trans∔er:						
Macnaell		0	0	0.00	0.00	0.00
Sheemahant		0	Ç	0.00	0.06	0.00
Crew Transport				2.07	2.07	2.24
Grummy, RTT min	50					
Town Run, RRT min	111					
Commuting Crew.X	100					
Boat Crummy, RRY	Û					
Camp				0.55	0.55	0.40
Shop/Office only	1					
Cre# 5128, #	Ō					
Camp ύσουρ°ογ, #	ģ.					
Single Occup. *	0					
Cookhouse loss				0.00	0.00	0.00
Remote Gp. yes=1	Ú			-0.29	-0.29	-0.31
Site Specific, \$	0			0.00	ů.00	0.00
űverhead						
Gen.& Admin.				2.55	2.55	2.77
Operational				5.41	5.41	5.95
Miscellaneous					0.00	0.00
******	******	******	*******	******	*****	******

Auditor benefit and the stage of the stage o

Agranda Agrand

OPERATING COSTS SUMMARY, \$/#3	₹

Licence:	ERS TFL 39
Cutting Permit:	Take Area
Forest District:	Campbell River
Location:	Tsitika River
Appraisal Date:	850731
Effective Date:	850 201
Volume, m3:	45742
Area, ha:	80.8
fnase	\$/£3
14; 3r- str- str str str str str str	
Development	3.87
Felling & Bucking	3.31
Yarding	5.27
Skidding	0.0 9
Loading	2.61
Hauling	3, 35 3, 35
Swinging	0.00
Road Maintenance	0.31
Dums/Bort/Boom/Scale	3.01
Water Transport	1,95
Owikeno Transfer	0.00
Crew Transport	2.67
Camp	0.55
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	5.90
Miscellaneous	ó.0ŭ
Total Untrended Op. Cost	34 . 98
Trend Factor	1.0849
Total Trended Op. Cost	37.95
*************************	<u> </u>

4.4.2.0.11.2.0.1

Constant of the Constant of th

VANCOUVER FOREST REGION		LCULATION			Licence:		ER5 TFL 3			Page 5
Forest District: Campbe					Cutting P		Take Area			
Appraisal Date: 8507		Volume:	45742 m3		Location:		Tsitika F			
****************	*********	********		*****	*******	******	******	*********	*******	*******
			\$/M3							
	Balsam	Cedar	Cypress	Fir	Healock	Pine L.	Spruce	Pine W.	U/5	Total
Pro-rated Selling Price	40.26	63.12	0.00	0.00	44.31	0.00	121.63	26.48	0.00	
Profit/Risk Ratio	0.14	0.14	0.00	0.00	0.14	0.00	0.14	0.14	0.00	
Discount Value	35.32	55.37	0.00	0.00	38.87	0.00	106.69	23.23	0.00	
Operating Costs	37.95	37.95	0.00	0.00	37.95	0.00	37.95	37.95	0.00	
Conversion Return	2.31	25.17	0.00	0.00	6.36	0.00	83.68	-11.47	0.00	
Indicated Stumpage	-2.63	17.42	0.00	0.00	0.92	0.00	68.74	-14.72	0.00	
Profit/Risk	4.94	7.75	0.00	0.00	5.44	0.00	14.94	3.25	0.00	
Valuation Factor	-1.14	0.69	0.00	0.00	0.14	0.00	0.82	0.00	0.00	
Upset Stumpage	3.22	17.42	0.00	0.00	3.55	0.00	68.74	2.12	0.00	
Pro-Rate 7										
Pro-Rate Value, \$	/ # 3									
•	ងវ៉									
Final Stumpage	3.22	17.42	0.00	0.00	3.55	0.00	68.74	2.12	0.00	
Royalty rate	1.20		1.50	2.00	1.20	0.80	2.00	0.80	0.50	
Final Stpg.less Royalty	2.02		0.00	0.00	2.35	0.00	66.74	1.32	0 .0 0	
Base AKV, \$	/m3 40.26	63.12	0.00	0.00	44.31	0.00	121.63	26.48	0.00	
Small Operator Indicator	· NA	NA	NA	NA	NA	NA	na na	NA	NA	
Code Type:	5									
Volume	m3 6550	11940	٥	0	25200	0	1316	736	0	45742
Total Upset Value,	\$ 13238	190052	0	0	59094	0	87835	970	0	351190
Total Conversion Return,	\$ 7296	282604	0	0	130092	0	107492	-9032	0	518453
Total Indicated Value,	\$ -25092	190052	0	0	-7044	0	87835	-11425	Ŏ	234326

APPENDIX V A

APPRAISAL SUMMARY

RECEIVE AREA - SCHEDULE "A" (EQUAL VALUE)

Licence: TFL 39 Appraisal Date: 850731 Cutting Permit: Receive Area Effective Date: 850201 Tsitika River Location: Forest District: Campbell River 1 Approved Cruise: Tenure: (v=1. n=0) TFL & FL = 1 Net Volume, #3 332646 TSL = 2Area, hai 378.8 Marketer: 29.8 Side Slope, %: hayor=1, Small=1 Terrain Code: 1.46 Term, yrs: Loo Vol. 10s. #3: 1.13 Annual Volume. a3: 110882 Log Vol.(scale): Annual Oc.Days: 150 2.53 Net Vol/tree, m3: Grade. %: Balsam Cedar Cypress Fir Hemlock Fine L. Spruce Fine W. 0/5 Total Peeler A 39.6 В 26.7 21.6 0.0 0.0 2.3 2.3 Lumber D 2.5 0.0 5.3 0.0 0.0 0.0 1.0 4.1 0.0 Sawlog H 3,5 36.4 30.5 0.0 13.5 0.0 0.0 0.0 17.6 25.7 7.7 31.0 37.8 0.0 0.0 0.0 8.5 5.2 25.2 46.1 0.0 0.0 0.0 0.0 Smingle K 0.0 9.7 N. 11.5 Utility X 6.7 3.5 2.7 9.2 0.0 0.0 0.0 J6.8 Chip&Saw Y 0.2 0.1 13.6 0.0 8.9 0.0 0.0 0.0 0.0 Total % 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 Total Net Vol. #3: 76052 62481 14034 258 179821 9 0 332646 Ą. Q 7.2 Decay, 1: 27 34.9 1.5 8.4 Ú 0 0 Û 14.5 Slope Class, % 0-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 95-94)=95 75-84 100 2 11 48 20 7 4 3 3 1 i

ROAD CONST	RUCTION CO	1818								!	Page 2
*******	******	*******	*****	*******	* * * * * * * * * * * * * * * * * * *	*******	*******	*********	******	*******	******
Licence:		Ţ	TFL 39		Cutting Permit:		Receive i	nt Ba			
Volume, al	1		332646								
Highway tr	dCX5	Í									
Off-Highwa	ly trucks	2	2								
Front-End	Loader	1									
Heelboom i	.cader	2	1		Road Widt	it, a:	4.9				
Section	Const.	Side	Grade	Rock	Ballast	Ballast	Pit	Ballast	End	Ball. Haul	Grade
Length	Type	Slope	Rock	Hardness	Type	Haul	Class	Hardness	Haul	Road	Pit
•	B/H=i			Soft=1	Gravel=1	Distance	- Gravel	9/#≈1		Elev.	Elev.
Kā.	Cat≃3	*: %	%	M/H=2	Rock=2	长素	2-4	Hard=I	ķā	器	聚
*******	********	******	******	*******	*******	*******	*******	********	*****	********	******
8.95	1	lb	Ô	1	2	2	2	1		500	30 0
2.98	1	21	15	į	2	1.5	1 2	i		606	5 00
1.94	1	47	25	*	2	2.5	2	1		700	500
ÿ. 15	į	47	30	1	2	2.5	2	. 1		700	500
0.60	1	48	50	2	7	3	2	1		8 00	5 00
0.15	1	68	75	2	2	7	; 2	1		8 00	500

Section Length	Const. Category	Ballast Depth	Volume	Average Gradient	Basic Cost B/H	Ballast Cost	Cost	Total Cost	Section Cost
民程	1-6	揮	€ 3	i,	\$/ka	\$/m3	\$/ks	\$/k#	\$
******	*********	*****	******	{ 	*****	******	******	******	*******
8.95	1	0.8	4880	10	9.3	6.74	32872	42172	377437
2.98	3	0.8	4880	7	16.7	6.61	32279	48979	145957
1.94	3	0.5	2900	ē	23	6.85	19887	42887	83200
0.15	3	0.5	2900	8	23	6.86	19887	42887	6433
0.6	4	0.1	540	10	46.5	6.9 8	3769	50269	30161
0.15	c :	0	0	10	57.7	6.98	Û	57700	8655
0	į		0	Ú		0.00	Ú	Q	Û
Û	1		0	Ú		0.00	ŷ	Ú	Û
0	4		0	0		0.00	Ú	0	6
0	1		0	0		0.00	0	0	Ó

ulverts:							Pa
rainage Class	Type	Dias	Length	Number	Cost	Tot.Cost	
······································	,.					\$	
i. Cross Drains	Metal	500 mm		73	22630		
2. Seasonal/small streams	Wand	.75 m2		8	3360		
3. Intermed/medium streams		1.5 m2		4	3360 2520		
4. Perennial/large streams	Kood	3.75 42		Û	0		
Other installations	Metal	600	10	0	0		
	Metal	90 0	12	0	Ç		
	Metal	1220	14	0	0		
Special installations						25510	
Brìdges:							
Location	Share	Crib ht	3946	Number	Cost		
	Ratio	£.	#16		\$		
					Ú		
				¢	0		
					Û		
					0		
					Ú		
Special installations						Ŷ.	
Miscellaneous Development	Costs:						
Mar Mar And Mar And That Sign cape stay stay stay stay stay stay stay stay		•			Û		
					0		
					Ű	\$	
**************************************		.*********	*******	******	******	*************	**
	Äverage						
	Cost	Cost	Cost				
ĸ a		\$	\$/m3				

Roads 14.77	44133	651843	1.96				
Culverts		28510					
Bridges		0	0.00				
Miscellaneous		0	0.00				
Total Development Cost		680353	2.05				

ROAD CONSTRUCTION COSTS

Phase		Volume	Volume	Untre	ndec	Trended
		% of Tat	aī	Unit P	rorated	€ost
Development						
Roads (km)	14.77	100	332646	2.05	2.05	2.22
Landings (#/km)	2	100	332646	0.15	0.15	0.16
Ldqs. H/C (m2)	Û	0	0	0.00	0.00	0.00
Skid Trails				0.00	0.00	0.00
Fell & Buck		Ιὐυ	332646	3.29	3.29	3,57
Blowdown Area.ha	Ĵ					
Affected %	0					
Yardıng						
High Lead Spar		20	99793.8	5.66	1.70	1.84
Skyline		Û	Q.	0.00	0.00	0.00
Srapple		70	232852.2	4.48	3.12	3.39
Helicopter S-t-W		ŷ	Ŷ	0.00	0.00	0.00
Helicopter 5-t-T		0	Û	0.00	0.00	0.00
Skidding, FELor,%	0	0	ý			
RTLS (T/L=1)	ű	Ũ	Ú	0.60	0.00	0.00
R165		0	0		0.00	0.00
STLS		Ú.)		0.0 0	0.00
Loading		Û	Û			
Heeloooe		100	332646	2.43	2.43	2.64
Front End		¢	0	0.00	0.00	0.00
Hauling (one type or	ilyi					
Highway (m3/ld)		Ũ	Û	0.00	0.00	0.00
On-Off Highway		0	6	0.00	0.00	0.00
Off-Highway	0	100	332o4o	3.94	3,94	4.27
· ·	Dist.	Loaded	Empty	Time		
	kæ	kph		#1n		
Branch	5.3	10	-	53		
Mainline	26.2	35	45	80		
Highway	0.0	0	0	Q		
Loading time (.00 avo.	.m3)	1.1	33		
Unloading time				15		
Unavoidable dela	3À			15		
Total time				196		
Swinging (km)	0.0	Ü	Ô	0.00	0.00	0.00
Road Mtce. (km)	31.5	100	332646	1.02	1.02	
Spring open (km)	25	100		0.05	0.05	
Dump/Sort/Boom/Sc.				3.01	3.01	
(System # 1-6)	3					

**************************************		Volume	Volume			Trended
rmase Water Transport		AAAA	AGIRER	untre	HUEL	ii enueu
From: Eve River						
To: Gambier						
	· nr					
	1.95			5.65	6 65	5 62
Towing				0.00		
Barging		_			1.95	
Lake Tow, km:	Ú	Û	0	9.00	0.00	0.00
Úwikeno Transfer:						
Machmeli		Ü	ŷ	0.00	0.00	0.00
Sheemahant		Û	Ĉ	0.00	0.00	0.00
Crew Transport				2.18	2.18	2.07
Crummy, RTT min	60					
Town Run, RRT min	111					
Commuting Crew, %	100					
Boat Crummy, RRT	0					
Camp				0.55	0.55	0.60
Shop/Office only	1					
Crew siza, #	Ô					
Camo Occupicy, *	Û					
Single Occup. #	0					
Cookhouse loss				0.00	0.00	0.00
Remote On. ves=1	0				-0.29	
Site Specific, \$	Ď				0.00	
Overhead	·			- x - v	A . A.D.	X # A #
Sen.& Admin.				2.55	2.55	2.77
Operational				6.41		6.95
Miscellaneous				W : T i	0.00	0.00

O., reasonable

OPERATING COSTS SUMMARY, \$/#3	Page 4
*********	************
Licence:	TFL 39
Cutting Fermit:	Receive Area
Forest District:	Campbell River
Location:	Tsitika River
Appraisal Date:	85 0731
Effective Date:	85 0201
Volume, m3:	332648
Area, hal	378.8
Phase	\$/ a 3

Development	2.19
Felling & Bucking	3.29
Yarding	4.82
Skidding	0.00
Loading	2.43
Hauling	3,94
Swinging	0.00
Road Maintenance	1.08
Dump/Sort/Boom/Scale	3.01
Water Transport	1.95
Swikens Transfer	0.00
Grew Transport	2.18
Camp	0.55
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	8.96
Miscellaneous	0.00
Total Untrended Op. Cost	34.11
Trend Factor	1.0849
Total Trended Op. Cost	37.01
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	}

 $b_{j}^{2}b^{+}$

VANCOUVER FOREST REF			CULATION			Licence: Cutting P	monib:	TFL 39 Receive A	.est		Page 5
		KIASL		****	-	•					
Appraisal Date:	85 0731		Volume:	332646		Location:		Tsitika f			
*************	******	******		********* \$/H3	*******	*******	*******	*******	*********	******	*******
		Balsam		Cypress	Fir	Hemlock	Pine L.	Spruce	Pine N.	0/5	Total
Pro-rated Selling P	rice	41.54	63.95	66.33	105.72	43.40	0.00	0.00	0.00	0.00	
Profit/Risk Ratio		0.14	0.14	0.14	0.14	0.14	0.00	0.00	0.00	0.00	
Discount Value		36.44	56.10	58.19	92.74	38.07	0.00	0.00	0.00	0.00	
Operating Costs		37.01	37.01	37.01	37.01	37.01	0.00	0.00	0.00	0.00	
Conversion Return		4.54	26.94	29.33	68.72		0.00		0.00	0.00	
Indicated Stumpage		-0.57	19.09	21.18	55.73		0.00		0.00	0.00	
Profit/Risk		5.10	7.85	8.15	12.98				0.00	0.00	
Valuation Factor		-0.12	0.71	0.72	0.81		0.00		0.00	0.00	
Upset Stumpage		3.32	19.09	21.18	55.73		0.00		0.00	0.00	
Pro-Rate %											
Pro-Rate Value,	\$/a3										
Bonus Bid,	\$/#3										
Final Stumpage		3.32	19.09	21.18	55.73	3.47	0.00	0.00	0.00	0.00	
Royalty rate		1.20	1.50	1.50	2.00	1.20	0.80	2.00	0.80	0.50	
Final Stpg.less Roya	alty	2.12	17.59	19.68	53.73	2.27	0.00	0.00	0.00	0.00	
Base AMV,	\$/#3	41.54	63.95	66.33	105.72	43.40	0.00	0.00	0.00	0.00	
Small Operator Indic	cator	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Code Type:		5									
Volume	a 3	76052	62481	14034	258	179821	0	0	0	0	332646
Total Upset Value,	\$	161489	1098958	276211	13864	408524	0	0	0	0	1959047
Total Conversion Re	turn, \$	253717	1589642	390537	17213	933543	0	0	0	0	3184653
Total Indicated Val	ue, \$	-134279	1098958	276211	13854	-24827	0	0	0	0	1229928

Water Commence

APPENDIX V B

APPRAISAL SUMMARY

RECEIVE AREA - SCHEDULE "A" (EQUAL VOLUME)

VANCOUVER FOREST REGION APPRAISAL DATA SHEET

******	********	********	*******	[*********	(**** ***	******	******	******	********	******	******	******
Licence	:	TFL J9		Appraisal	Date:	850731						
Cuttino	Permit:	Receive Ar	e ä	Effective	Date:	950201						
Locatio	ř.	Tsitika Ri	¥ € F	Forest Dis	strict:	Campbell	River					
Approve	d Cruise:	1		lenure:		Ţ						
(¥=;,	n=0)			TEL & F	L = 1							
Net Volu	uae, mj	293924		TSL	# #							
Area, h	ă.	332.2		Marketer:		1						
Side Sid	ope, 1 :	29.8		Naior=1	Small=	3						
Terrain	Code:	1,46		Tera, vrs	z t	3						
Log Vol	. 10s. mJ:	1.13		Annual Vol	iu⊪≘. mJ:	97974.66						
				Annual Op	.Davs:	150						
Net Vol	/tree, #3:	2.53										
Grade,	in t	Balsam	Cepar	Cypress	Fir	Healock	Fine L.	Spruce	fine ¥.	0/9	Tota:	
Yeeler	A				39.0							
	ŝ				26.7							
	ج. ت	21.6			0.0			0.0				
Lumber	Ď	2.3	2.0	2.3	0.0	5.3	0.0	0.0	0.0			
	F		1.0	4.1				0.0				
Sa∗log	Ħ	7.5	35.4	30.5	0.0	15.6	0.0	0.0	0.0			
	1	19.6	26.7	7.7	31.0	37.8	0.0	0.0	0.6			
	į	45.1	5.5	5.3	0.0	25.2	0.6	0.4	0.0			
Shingle	Ł.		0.0									
			9.7									
	M		11.5									
Utility	X	6.7	3.5	36.6	2.7	9.2	0.0	0.0	0.0			
Chip&Sa	W Y	0.2	0.1	13.6	0.0	8.9	0.0	0.0	0.0	0.0		
Total %		100.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	0.0		
Total N	et Vol. al	66594	56898	10818	258	159356	Ú	0	0	0	293924	
Decay,	\$: b :	7.2	27	34.9	1.5	8.4	Ú	ŷ.	Û	0	14.5	
Slope C	lass, %	0-4	5-14	15-24	25-34	35-44	45-54	55-64	65-74	75-84	85-94	>=95
	100		11		20		4	3	3	1	0	1
******	*******	********	*****	********	******	*******	*******	*******			********	

ROAD CONST	RUCTION CO	3575									Page 2
*******	*******	*******	******	*******	******	*****	*****	******	*******	********	******
Licence:		West and the second	FL 39		Cutting F	erait:	Receive A	rea			
Volume, a	T: À∔		293924								
Highway tr	ucks	I									
Off-Highwa	ay trucks	2	2								
Front-End	Loader	1									
Heelboom i	.oader	2	1		Road Widt	h, a:	4.9				
Section	Const.	Side	Grade	Rock	Ballast	Ballast	Pit	Ballast	End	Ball. Haul	Grade
Length	Type	Slope	Rock	naroness	Type	Haul	Class	Hardness	Maul	Road	Pit
	B/H=1			Soft=1	Gravel=1	Distance	Gravel	S/M=1		Elev.	Elev.
KE	Cat=3	*/ /s	** **	M/H=7	Rock=2	k a	2-4	Hard=1	ks:	E ;	æ
*******	******	*******	******	f * * * * * * * * * *	*******	******	*******	*******	*****	********	*****
8.15	1	16	Û	*	2	2	2	1		500	300
2.72	*	21	15	•	2	1.5	2	1		60 0	500
1.77	i	47	25	į	2	2,5	2	1		7 06	5 00
0.14	•	47	30	1	2	2.5	2	1		700	500
0.55	1	68	50	7	2	7	2	1		800	500
0.14	1	68	75	2	2	ទី	. 2	1		800	500

Section Length	Const. Category	Ballast Depth		Average Bradient	Basic Sost 8/8	Ballast Cost	Ballast Cost	Total Cost	Section Cost
K蓬	1-6	自	#J	t) 6	\$/张康	\$/#3	\$/km	\$/k#	\$
******	*******	*******	*******	*******	******	******	*******	******	******
8.16	1	0.8	4880	10	9.3	5.74	32872	42172	344121
2.72	3	0.8	4880	7	15.7	6.61	32279	48979	133222
1.77	3	0.5	2900	8	23	6.86	19887	42887	75910
0.14	3	0.5	2900	8	23	6.85	19887	42887	6004
0.55	4	0.1	540	10	46.5	6.98	3769	50269	27648
0.14	5	0	0	10	57.7	6.98	Û	57700	8078
0	1		0	Û		0.00	Ű	ĕ	Q
Û	1		0	0		0.00	Û	0	0
0	1		0	Û		0.00	0	0	0
Û	1		0	0		0.00	Ű	Ú	Ó

|

Culverts:							Page 3
Orainage Class	Туре	Diak	Length	Number	Cost	Tot.Cost	
			£		Š	\$	
i. Cross Drains	Metal	500 mm		67	20770		
l. Seasonal/small streams				7	2940		
l. intermed/medium streams		1.5 m2		4	2520		
. Parennial/large streams	Wood	3.75 æ2		0	Ģ		
Other installations	Metal	6 00	10	Ç	¢.		
	Metal	9 00		Ū			
	Metal	1220	14	0	0		
Special installations						2 623 0	
Brioges:							
	***	Balan av	٠		<i>"</i>		
Location		Crip ht					
	Kāllo	Æ	燕		‡		
					Ō		
				Q	0		
					0		
					ú		
					0		
Special installations						Q	
Miscellaneous Development	Costs:						
The set the fact of the set of th	~~~~~~~~~	•			0		
					ű		
					0	0	
**************************************		ŧ\$ ‡ \$ ‡ \$ ‡ \$	*******	*******	******	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	***********
		Total	Unit				
	Augeren		A185 T F				
Distance							
Distance	Cost	Cost	Cost				
Distance ko	Cost \$∕ka	Cost \$	Cost \$/#3				
Distance ka	Cost = \$/km +******	Cost \$ *******	Cost \$/#J ******				
Distance ke **********************************	Cost = \$/km +******	Cost \$ (******* 594983	Cost \$/&3 ******* 2.02				
Distance km ***********************************	Cost = \$/km +******	Cost \$ (******* 594983	Cost \$/#3 ******* 2.02 0.09				
Distance ke **********************************	Cost = \$/km +******	Cost \$ •******* 594983 26230	Cost \$/&3 ******* 2.02				

Phase			Volume			
	;	L of Tot	@ 3	Unit	Prorated	Cost
Development						
Roads (km)	13.48	100	293924	2.11	2.11	2.29
Landings (#/km)	2	100	293924	0.16	0.15	0.18
Logs. H/C (#2)	0	٥	0	0.00	0.00	0.00
Skid Trails				0.00	0.00	0.00
Feli & Buck		100	293924	3.29	3.29	3.57
Blowdown Area,ha	Ü					
Affected %	0					
Yarding						
Hìgh Lead Spar		36	88177.2	5.66	1.70	1.84
Skyline		¢	0	0.00	0.00	0.00
Grapple		70	205746.8	4.45	3.12	3.39
Helicopter S-t-W		Û	Û	0.00	0.00	0.00
Helicopter S-t-T		Û	Û	0.00	0.00	0.00
Skidding, FELdr, %	0	Q.	Û			
RTLS (T/L=1)		Û	0	0.00	0.00	0.00
RT65		0	0		0.00	0.00
STLS		0	Ó		0.00	0.00
Loading		0	0			
Heelboom		100	293924	2.43	2.43	2.64
Frant End		0	\$	0.00	0.00	0.00
Hauling (one type o	nly)					
Highway (m3/ld)		0	Û	0.00	0.00	0.00
On-Off Highway		0	()		0.00	
Off-Highway		100	293924	3.94	3.94	4,27
Cycle time:			Empty	Time		
	kæ		kph			
Branch	5.3			53		
Mainline	26.2	35	45	80		
	0.0			0		
Loading time (33		
Unloading time				15		
Unavoidable del	à y			15		
Total time				194		
Swinging (km)	0.0	0	Ó	0.00	0.00	0.00
Road Mtce. (km)	31.5	100	293924	1.03	1.03	1.1
Spring open (km)	25	100		0.06	0.06	0.0
Dump/Sort/Boom/Sc.				3.01	3.01	3.2
(System # 1-6)	3					
Rehaul, RTT min	0					

Page 4A

OPERATING COSTS SUMMARY, \$/m3

*************	*****	*******	*****	********	******	*****
Phase		Volume	Volume	Untre	nded	Trended
Water Transport						
From: Eve River						
To: Sambier						
Rate, \$/m3:	1.95					
Towing				0.00	0.00	0.00
Barging				1.75	1.95	2.12
Lake Tow, ka:	0	Û	◊	0.00	0.00	0.00
Owikeno Transfer:						
Machmell		0	0	0.00	0.00	0.00
öheemahant		0	Û	0.00	0.00	0.00
Crew Transport				2.18	2.18	2.37
Crussy, ATT min	60					
Town Run, RRT man						
Commuting Crew.%	100					
Boat Grumey, RRT	Ô					
Camp				0.55	0,55	0.60
Shop/Office only	1					
Crew size, #	Ú					
Camp Occup'cy, #	Û					
Single Sccup. €	Q.					
Cookhouse loss				0.00	0.00	0.00
Remote Op. yes=1	0			-0.29	-0.29	-0.31
Site Specific, \$	Û			0.00	0.00	Ģ.0(
üverhead						
Sen.& Admin.				2.55	2.55	2.77
Operational				5.41	5.41	6.9
Miscellaneous					6.00	0.00

OPERATING COSTS SUMMARY, \$/a3	₹age 4

Licence:	TFL 39
Cutting Permit:	Receive Area
Forest District:	Campbell River
Location:	Tsitika River
Appraisal Date:	85 0731
Effective Date:	85 0201
Volume, m3:	293924
Area, ha:	332.2
Phase	拿了商员
Development	2.28
Felling & Bucking	J.29
Yarding	4.82
Skidding	0.00
Loading	2.43
Hauling	3.94
Swinging	0.00
Road Maintenance	1.09
Dump/Sort/Boom/Scale	3.01
Water Transport	1.95
Owikeno Transfer	0.00
Crew Transport	2.18
Camp	0 .5 5
Cookhouse Loss	0.00
Remote Operation	-0.29
Gverhead	8.96
Miscellaneous	0.06
Total Untrended Op. Cost	34.21
Trend Factor	1.0849
Total Trended Op. Cost	37.11

Seattle de la Contrata

Samuel Annual Control

Authority why the dust

A desired and a fine

Sauce Control

VANCOUVER FOREST REGION STU		CULATION		•	Licence:		TFL 39			Page 5
Forest District: Campbell: Appraisal Date: 850731	River	Volume:	293924	a. T	Cutting P Location:		Receive A Tsitika F			
######################################	*******								******	********
			\$/M3							
	Balsam	Cedar	Cypress	Fir	Hemlock	Pine L.	Spruce	Pine W.	0/5	Total
Pro-rated Selling Price	41.54	63.95	66.33	105.72	43.40	0.00	0.00	0.00	0.00	•
Profit/Risk Ratio	0.14	0.14	0.14	0.14	0.14	0.00	0.00	0.00	0.00	
Discount Value	36.44	56.10	58.19	92.74	38.07	0.00	0.00	0.00	0.00	
Operating Costs	37.11	37.11	37.11	37.11	37.11	0.00	0.00	0.00	0.00	
Conversion Return	4.43	26.84	29.22	68.61	6.29	0.00	0.00	0.00	0.00	
Indicated Stumpage	-0.67	18.98	21.08	55.63	0.96	0.00	0.00	0.00	0.00	
Profit/Risk	5.10	7.85	8.15	12.98	5.33	0.00	0.00	0.00	0.00	
Valuation Factor	-0.15	0.71	0.72	0.81	0.15	0.00	0.00	0.00	0.00	
Upset Stumpage	3.32	18.98	21.08	55.63	3.47	0.00	0.00	0.00	0.00	
Pro-Rate I										
Pro-Rate Value, \$/m3										
Bonus Bid, \$/#3										
Final Stumpage	3.32	18.98	21.08	55.63	3.47	0.00	0.00	0.00	0.00	
Royalty rate	1.20	1.50	1.50	2.00	1.20	0.80	2.00	0.80	0.50	
Final Stpg.less Royalty	2.12	17.48	19.58	53.63	2.27	0.00	0.00	0.00	0.00	
Base AMV, \$/#3	41.54	63.95	66.33	105.72	43.40	0.00	0.00	0.00	0.00	
Small Operator Indicator	NA	NA	NA	NA	NA	NA	NA	NA	MA	
Code Type:	5									
Volume m3	66594	56898	10818	258	159356	0	0	0	0	293924
Total Upset Value, \$	141406	994806	211783	13837	362031	0	0	0	0	1723864
Total Conversion Return, \$	215196	1441645	299910	17186	810523	0	0	0	0	2784560
Total Indicated Value, \$	-124548	994806	211783	13837		0		0	0	1057201

Salasina (gangan)

San Albana Sub

Culan mulad Ch

And the state of t

W. Daniel and Market Market

A Standard Control

APPENDIX VI A

APPRAISAL SUMMARY

CROWN GRANT, LOT 223 - (CALL GRADES)

ER1 Lot 223 Appraisal Date: 850731 Cutting Permit: Crown Grant Effective Date: 850201 Location: Robson Bight Forest District: Campbell River Approved Cruise: 1 Tenure: (y=1. n=0) TFL & FL = 1 Net Volume, m3 27249 TSL = 234.8 Area, ha: Marketer: Side Slope, %: 20.2 Major=1, Small=2 Terrain Code: 1.55 Tera. yrs: 1 Loo Vol. 10e, m3: 0.92 27249 Annual Volume, m3: Log Vol.(scale): Annual Op.Days: 180 Net Vol/tree, mJ: 1.83 Grade. X: Balsam Cedar Cypress Fir Hemlock Pine L. Spruce Pine W. 0/8 Total Peeler A 1.3 9.5 14.7 1.6 17.2 Lumber D 15.7 0.0 0.0 0.0 5.8 0.0 3.7 0.0 0.0 0.0 5.6 Sawlog H 14.3 17.6 0.0 13.8 14.5 0.0 3a.1 0.0 26.8 1.6 0.0 14.2 35.0 0.0 0.0 0.0 20.3 71.2 56.8 0.0 36.2 100.0 32.0 0.0 Shingle K 0.04.7 0.7 Utility X 6.9 4.1 0.0 2.7 7.5 0.0 4.8 0.0 Chip&Saw Y 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0100.0 Total % 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 Total Net Vol. m3: 28 a547 709 Ú 1334 10308 Û 6417 1906 27249 Decay, A: 8.2 19 4 3.5 6 Š 0 1.2 Q 1.4 4.4 Slope Class, % 0-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85-94 >=95 100 49 26 3 3 3 3 2 2 7

ROAD CONST			********	*******			********				age 2
Licence: Volume, m3			R1 Lot 2 27249	********* 23	Cutting i	ermit:	Crown Gra	ant	*******	**********	******
Highway tr	ucks	1									
Off-Highwa	•	2	2								
Front-End	Loader	1									
Heelboom L	.oader	2	1		Road Widt	ih, mi	4.9				
Section Length	Const. Type B/H=1	Side Slope	Grade Rock	Hardness	Ballast Type Gravel=1	Haul	Class	Ballast Hardness S/#=1	End Haul	Ball. Haul Road Elev.	Grade Pit Elev.
英儀	Cat=3	h h	ę.	M/H=2	Rock=2	kæ	2-4	Hard=2	* #	26	•
******	*******	*******	******	*******	*******	*******	*******	********	******	********	******
1.43	1	1.5	Û	1	*	1	হ	1		10	50
0.45	1	5.5	2	1	. 2	2	3	1		5 0	50
0.18	1	44	35	2	2	2	14	1		150	50
0.09	*	83	60	2	2	2	4	1		150	50
0.15	1	83	75	2	2	2	4	ì		200	50

/H	8/	6radient	Volume	Death	Category	Length
	\$/1	j,	#3	ě	1-6	k #
******	*****	********	*******	******	********	********
7.1 1.	7.	-4	6800	1	1	1.43
.2 6.	12.	0	5580	0.9	2	0.45
5.6 6.	26.	5	3540	0.6	3	0.18
.9 6.	49.	5	Û	0	4	0.09
62 6.	ŧ	8	0	0	5	0.15
Û.		0	0		1	0
Ù.		0	0		1	. 0
Ò.		0	Ô		1	0
0.		0	0		1	0
O.		0	0		1	Û
2.2 6. 6.6 6. 6.9 6. 6.2 6. 0. 0.	12. 26. 49.		0 5 5 8 0 0 0	5580 0 3540 5 0 5 0 8 0 0 0 0	0.9 5580 0 0.6 3540 5 0 0 5 0 0 0 0 0 0 0 0 0	2 0.9 5580 0 3 0.6 3540 5 4 0 0 5 5 0 0 8 1 0 0 1 0 0 1 0 0

Culverts:							<u>. </u>
TRIABLIS!							Page 3
Brainage Class	Type	Dias		Number			
1. Cross Drains	Manaka t	5 00 a.s.	蠹			\$	
 Geasonal/sæall stre 	Metal	500 mm .75 m2			248 0		
 Jeasonar/searr scre Intermed/medium str 		1.5 m2		0			
4. Perennial/large str					6 30		
Other installations		3.75 m 2 600	* △	\$ ()	98 0		
nems: impeditations	Metal	900	10 12	ψ Λ			
	netal Netal						
Special installatio		1220	14	Ŷ	ŷ		
pherio: thefattario	113					4090	
Eridges:							
Location	Chara	Crib ht	Sana	Error bone	r2		
hosted by the by all Ser's E		Grid ne		は言語作品と	\$		
Tsitika River	0.01	5	21	1	5 77		
				0	Û		
					Ó		
					Ÿ		
					Û		
Special installatio	ns .					577	
Miscellaneous Developm	ent Costs:	•••					
					Û		
					Û		
					ô	0	
**************************************		*******	*******	*******	•	•	¥************
ltem Dist	ance Average	Total	Unit				
	Cost	Cost	Cost				
	ka 5/ka	\$	\$/ a 3				
**************	*********	********	*****				
	2.31 31501	72768	2.67				
Culverts		4090	0.15				
Bridges		577	0.02				
Miscellaneous		0	0.00				

2.84

Total Development Cost

**************************************		Volume	Volume	Untre	nded	rended
F 11444-20-EC		volume L of Tat	#3		rorated	Cost
	•	A UI IUL	#i J	OHIL C	DIECEU	CUST
Development						
Roads (km)	2.31	100	27249	2.84	2.84	3.08
Landings (#/km)	1	100	27249	0.19	0.19	0.20
Ldgs. H/C (#2)	٥	()	Q	0.00	0.00	0.00
Skid Trails				0.00	0.00	0.00
Fell & Buck		100	27249	3.38	3.38	3.66
Elowdown Area,ha	0					
Affected %	Ű					
Yarding						
High Lead Spar		20	5449.8	5.90	1.18	1.28
Skyline		G	0	0.00	0.00	0.00
6rapple		60	16349.4	4.85	2,91	3.15
Helicopter S−t-W		Ó	0	0.00	0.00	0.00
Helicopter â-t-T		0	0	0.00	0.00	0.00
Skidding, FELdr,%	. 0	0	0			
RTLS (T/L=1)	Û	20	5449.8	3.23	0.65	0.70
RISS		Û	٥		0.00	0.00
STLS		0	0		0.00	0.00
Loading		0	0			
Heelboom		100	27249	2.64	2.64	2.87
Front End		0	0	0.00	0.00	0.00
Hauling ione type of	11y)					
Highway (m3/ld)		Õ	ů	0.00	0 .0 0	0.00
On-Off Highway		9	Û	0.00	0.00	
Off-Highway	0	100	27249	1.63	1.63	1.77
Cycle time:	Dist.	Loaded	Empty	Time		
	k a	kph	kph	min		
Branch	1.0	10	15	10		
Hainline	0.8	25	35	3		
Highway	0.0	0	Ò	0		
Loading time (Log avg.	, a 3)	0.9	38		
Unloading time				15		
Unavoidable del	ay			15		
Total time				81		
Swinging (km)	0.0	0	0	0.00	0.00	0.00
Road Mtce. (km)	1.8	100	27249	0.59	0.59	0.64
Spring open (km)	0	100	27249	0.00	0.00	
Dump/Sort/Boom/Sc.				3.01	3.01	3.27
(System # 1-6)	3					
Rehaul, RTT min	0					

OPERATING COSTS SUMMA	*					Page 48
**************************************	****		******** Volume		******** nded	********* Trended
Water Transport		ANIGHE	ADIUST	UNITE:	1160	ii Ended
From: Robson Bight						
lo: Gambier						
Rate, \$/#3:	2.11					
Towing				9, 65	0.00	0.00
Barging					2.11	
Lake Tow, ke:	Ò	0	Û	0.00		
Owikeno Transfer:	-	Ť	-			
Machmell		0	ù	0.00	0.00	0.00
Sheemahant		ű.		0.00		
Crew Transport					3.41	
Crummy, RTT min	110					
Town Run, RRT min	111					
Commuting Crew, X	100					
Boat Crummy, RAT)					
Camp				0.55	0.55	0.60
Shop/Office only	1					
Graw size, #	Û					
Camp Occupicy, *	0					
Single Occup. ≹	0					
Cookhouse loss				0.00	0.00	0.00
Remote Op. yes=1	Õ.			-0.29	-0.29	-0.31
Site Specific, \$	0			0.00	0.00	0.00
Overhead						
Sen.& Admin.				2.55	2.55	2.77
Operational				6.41	6.41	6.95
Miscellaneous					0.00	0.00

OPERATING COSTS SUMMARY, \$/m3	Fage 4

Licence:	ER1 Lot 223
Cutting Permit:	Crown Grant
Forest District:	Campbell River
Location:	Robson Bight
Appraisal Date:	85 0731
Effective Date:	850201
Volume, m3:	27249
Area, ha:	34.8
Phase	\$/63
Development	3,63
Felling & Bucking	3.38
Yarding	4.09
Skidding	0.65
Loading	2.64
Hauling	1.63
Swinging	6. 0 0
Road Maintenance	0.59
Dump/Sort/Boom/Scale	3.01
Water Transport	2.11
Owikeno Transfer	0.00
Crew Transport	3.41
Camp	0.55
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	8.96
Miscellaneous	0.00
Total Untrended Op. Cost	33.7á
Trend Factor	1.0849
Total Trended Op. Cost	36.63
***************	**********

Crown Grant Forest District: Campbell River Cutting Permit: Appraisal Date: Volume: 27249 #3 Location: Rooson Breht 850731 \$/83 Spruce Pine W. Cedar Cypress Fir Hemlock Pine L. 0/S Total Balsas 45.15 82.25 0.00 36.63 Pro-rated Selling Price 48.14 55.75 0.00 51.35 17.90 0.14 0.00 0.14 0.14 0.14 0.14 0.00 0.14 Profit/Risk Ratio 0.14 0.00 32.13 42.23 48.90 0.00 45.05 39.61 15.70 72.15 Discount Value 36.63 0.00 36.63 Operating Costs 36.63 36.63 0.00 36.63 36.63 36.63 8.53 0.00 0.00 19.12 14.73 -18.7345.62 Conversion Return 11.51 0.00 2.98 -20.920.00 -4.50 Indicated Stumpage 5.60 12.28 0.00 8.42 35.52 5.91 6.85 0.00 5.55 2.20 10.10 0.00 4.50 Profit/Risk 6.31 0.78 0.00 0.00 Valuation Factor 0.49 0.64 0.00 0.57 0.35 0.00 12.28 8.42 3.61 1.43 35.52 0.00 2.93 Upset Stumpage 5.60 0.00 Pro-Rate 1 \$/#3 Pro-Rate Value, Bonus Bid. \$/#3 12.28 0.00 8.42 3.61 1.43 35.52 0.00 2.93 Final Stumpage 5.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Royalty rate 0.00 2.93 5.60 12.28 0.00 8.42 3.61 1.43 35.52 Final Stpg.less Royalty 55.75 45.15 17.90 0.00 Base AMV. \$/#3 48.14 0.00 51.35 82.25 36.63 MΛ NA ĦΔ NΑ ĦΑ Small Operator Indicator NA NA NΑ NA Code Type: 5 6547 709 1334 10308 28 6417 1906 27249 Volume 43 Total Upset Value, 8703 37235 227933 5585 327400 36672 11231 Total Conversion Return, \$ 75377 13557 0 19644 87896 -524292748 468698 8703 -586 227933 -8573 306118 Total Indicated Value, \$ 36672 0 11231 30737 0

Licence:

ERI Lot 223

VANCOUVER FOREST REGION STUMPAGE CALCULATION

Page 5

APPENDIX VI B

APPRAISAL SUMMARY

CROWN GRANT, LOT 223 - (COMPUTER GRADES)

MEENSTS	mu vala on	E.S. 1										
******	******	********	******	*******	*******	*******	*******	******	*******	*******	*******	*******
Licence	ŧ.	ERI Lot 223	í	Appraisal	Date:	850731						
Cutting	Permit:	Crown Grant		Effective	Date:	850201						
		Rooson Bigh					River					
Approve	d Cruise:	1		Tenure:		1						
	n=0)			TFL & F	[= [
Net Vol	ume, m3	27249		TSL	= 2							
Area, h	1 a :	34.8		Marketer:		1						
		20.2		Major=1	, Small=2							
Terrain	Cade:	1.55		Term, yrs	2	1						
Log Vol	. 10s. aJ:	0.92		Annual Vo	lume, s3:	27249						
				Annual Op	.Days:	180						
	/tree, m3:							,				
Grace.	4.	Balsam	Cedar	Cypress	Fir	Healock	Fine L.	Spruce	Pine *.	0/9	Total	
Peeler					0.0							
	3				1.7							
	Û	30.0			5.3			3.8				
Lumber	D	12.5			1.7	2.6	0.0		0.0			
	۶			Û.Ú				2.8				
Sawlog		11.5	10.9									
	* :	15.8			8.2		0.0					
	J	21.7			53.7	32.5	100.0	29.5	0.0			
5mingle			0.0									
	<u> </u>		0.0									
	E C		0.0									
	X	5.1			11.5	14.3			0.0			
Chip&Sa		2.2			0.7		0.0					
		100.0			100.0	100.0						
		: 6547			1334				0			
Decay,		8.2				3	Ú		0			
Slope C	-	0-4									85-94	>=95
	100	49	26	3	3	3	3	2	i	2	1	7

ROAD CONST		- -	*******	*******		******	*******	******	Az es	täbitevetes	Page 2
Licence:	********		RI Lot 2	 223	Cutting F	ermit:	*******	*****	********	*******	******
Volume, m3	*		27249		-						
Highway tr	ucks	4									
Off-Highwa	y trucks	2	2								
Front-End	Loader	1									
Heelboom L	.cader	2	***		Road Widt	it, Al	4.9				
Section	Const.	Side	Grade	Rock	Ballast	Ballast	Pit	Ballast	End	Ball. Haul	Grade
Length	Type	Slope	Rock	Hardness	Type	Haul	Class	Hardness	Haul	Road	Pit
	B/H=1			Saft=1	Gravel=1	Distance	Gravel	5/M=1		Elev.	Elev.
K E	Cat=3	*/ /z	No.	M/H=2	Rock=2	ke	2-4	Hard=2	k p	## /	譱
********	********	*******	******	*******	*******	****	******	*******	******	*******	******
1.43	1	1.5	Û		ž	1	3	1		10	50
0.46	ţ	6.5	2	-	2	2	3	1		50	50
0.18	4	4.4	35	2	2	2	4	1		150	50
0.09	1	83	60	Ž	2	2	4	ì		150	5 0
0.15	1	83	75	2	2	2	4	ž <u>i</u>		200	50

Section Length	Const. Category	Ballast Depth		Average Gradient	Cost B/H	Ballast Cost		Total Cost	Section Cost
k a	1-6	0	គេរី	7.	\$/ KE	\$/#3	\$/ka	\$/ke	\$
*******	*******	*******	********	********	******	******	*******	******	*******
1.43	1	1	9800	-4	7.1	1.73	11778	18878	26995
0.46	2	0.9	5580	0	12.2	6.74	37587	49787	22902
0.18	3	0.6	3540	5	26.6	6.74	23845	50445	9080
0.09	4	0	0	5	49.9	6.74	0	49900	4491
0.15	5	0	0	8	62	6.74	0	620 00	9300
0	1		0	0		0.00	Ø	0	Û
0	1		0	0		0.00	0	0	0
0	1		0	0		0.00	Ü	Ù	0
0	1		0	0		0.00	Ò	Ö	0
Ŷ	1		0	0		0.00	0	Ç	0

***********	**********	कित्र के के के कि के कि	*********	፣ የ ¥ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	********	***********	******
Culverts:							Page 3
Drainage Class	Type	Ď135	Length	Number	Cost ⊺	ot.Cost	
			春		\$	\$	
	Metal				2480		
2. Seasonal/small streams				Û	Û		
Intermed/medium streams				1	630		
4. Perennial/large streams		3.75 m2		1	980		
Other installations	Metal		10	Ü	Ĉ		
	Metal	900	4 F)	Q	Ú		
	Metal	1220	1	0	Ç		
Special installations						4 070	
Bridges:							
Location	Share	Orib ht	Saan	Number	ra∈+		
		ž:	8	15 m (15 m (15 m)	\$		
	1/4015	E;	1921		*		
Tsitika River	6.61	ç	21	1	577		
* I L G L P L L P L P L P L P L P L P L P L	0.41	ŧ	* 1	0	J., Ö		
				V	0		
					ů Ü		
					Ô		
Special installations					V	577	
Hiscellaneous Development	Costs:						
		•••					
					0		
					Û		
					Ũ	0	
DEVELOPMENT COST SUMMARY	********	********	******	********	*****	*********	*********
Item Distance	 Average	Total	Unit				
	Cost		Cost				
į.		\$	\$/m3				

Roads 2.3		72768	2.67				
Culverts		4090	0.15				
Total and			٠				

77435

0

0.02

0.00

2.84

Bridges

Miscellaneous

Total Development Cost

Phase		Volume	Volume	Untren	ded	Trended
	;	% of Tot	ស៊ី		orated	Cost
Development						
Roads (km)	2.31	100	27249	2.84	2.84	3.08
Landings (#/km)	į	100	27249	0.19	0.19	0.20
Logs. H/C (m2)	0	¢	Û	0.00	0.00	0.00
Skid Trails				0.00	0.00	0.00
Fell & Buck		100	27249	3.38	3.38	3. 6 6
Blowdown Area,ha	Ç					
Affected %	Q					
Yarding						
High Lead Spar		20		5.90	1.18	1.28
Skyline		0	Û	0.00	0.00	0.00
Grapple			16349.4	4.85	2.91	5.15
Helicopter 8-t-W		Ó	Q.	0.00	0.00	0.00
Helicopter 5-t-T		0	0	0.00	0.00	0.00
Skidding, FELdr,%	Ģ	Û	Û			
RTLS (T/L=1)	0	20	5449.8	3,23	0.65	0.70
RT69		Û	Ú		0.00	0.00
STLS		0	Û		0.00	0.00
Loading		Û	Ű			
Heelboom		160	27249	2.54	2.64	2.87
Front End		0	Ű	0.00	0.00	0.00
Hauling (one type or	ily)					
Highway (m3/ld)		Õ	Ù	0.00	0.00	0.00
On-Off Highway		Û	Ú	0.00	0.00	0.00
Off-Highway	Û	100	27249	1.53	1.63	1.77
Cycle time:	Dist.	Loaded	Empty	Time		
	k B	kph	kph	min		
Branch	1.0	10	15	10		
Mainline	0.8	25	35	3		
Highway	0.0	0	0	0		
Loading time ()	log avg.	, a 3)	0.9	38		
Unloading time				15		
Unavoidable dela	ì ý			15		
Total time				81		
Swinging (km)	0.0	0	0	0.00	0.00	
Road Mtce. (km)	1.8	100	27249	0.59	0.59	
Spring open (ka)	0	100	27249	0.00	0.00	
Dump/Sort/Boom/Sc.				3.01	3.01	3.27
(System # 1-6)	3					
Rehaul, RTT min	0					

*************	* # * * * * *					
hase		Volume	Volume	Untre	nded	Trended
Water Transport						
From: Robson Bight						
To: Gambier						
Rate, \$/mJ:	2.11					
Towing					0.00	
Barging				2.11	2.11	2.29
Lake low, ka:	Q	0	Û	0.00	0.00	0.00
Omikeno Transfer:						
Machmell		Ų.	Û	0.00	0.00	0.00
Sheemahant		Ü	0	0.00	0.00	0.00
lrew Transport				3.41	3.41	5.70
Crummy, RTT min	110					
Town Kun, RRT min	111					
Commuting Crew, %	100					
Boat Crummy, RRT	ð					
amp				0.55	0.55	0.60
Shop/Office only	1					
Crew size, #	0					
Camp Occup'cy, #	Ü					
Single Occup. #	0					
looknouse loss				0.00	ů .0 0	0.00
Remote ûp. ves=1	Û			-0.29	-0.29	-0.3
Site Specific, \$	Û			0.00	0.00	0.00
lverhead						
Gen.& Admin.				2,55	2.55	2.7
Operational					6.41	
discellaneous				55	0.00	0.00

OPERATING COSTS SUMMARY, \$/m3	Page 4
**************	****************
Licence:	ER1 Lot 223
Cutting Permit:	Crown Grant
Forest District:	Campbell River
Location:	Robson Bight
Appraisal Date:	850731
Effective Date:	850201
Volume, m3:	27249
Area, ha:	34.8
Phase	\$/£3
WE THE SAN TAN SAN SAN SAN SAN SAN	*** *** ***
Development	3.03
Felling & Bucking	3.38
Yarding	4.09
Skidding	0.65
Loading	2.64
Hauling	1.63
Swinging	0.00
Road Maintenance	0.59
Dump/Sort/Boom/Scale	3.01
Water Transport	2.11
Owikeno Transfer	0.00
Crew Transport	3.41
Camp	0.55
Cookhouse Loss	0.00
Remote Operation	-0.29
Overhead	8.96
Miscellaneous	0.00
Total Untrended Op. Cost	33.76
Trend Factor	1.0849
Total Trended Op. Cost	36.63
***********	**************

Parket additional and

Survey and Astronomy

Rectional transfer trails

VANCOUVER FOREST REGION Forest District: Campb	ell River				Licence: Cutting F	ermit:	ERI Lot 2 Crown Gra	int		Page 5
Appraisal Date: 850		Volume:	27249		Location:		Robson Bi	•		
***************	*********	********		******	********	*******	********	********	*******	******
			\$/H3							
	Balsa	e Cedar	Cypress	Fir	He∎lock	Pine L.	Spruce	Pine W.	0/5	Total
Pro-rated Selling Price	48.0	9 49.19	0.00	45.77	43.03	17.90	62.78	0.00	36.63	
Profit/Risk Ratio	0.1	4 0.14	0.00	0.14	0.14	0.14	0.14	0 .0 0	0.14	
Discount Value	42.1	9 43.14	0.00	40.15	37.75	15.70	55.07	0.00	32.13	
Operating Costs	36.6	3 36.63	0.00	36.63	36.63	36.63	36.63	0.00	36.63	
Conversion Return	11.4	7 12.56	0.00	9.15	6.40	-18.73	26.16	0.00	0.00	
Indicated Stumpage	5.5	6 6.52	0.00	3.53	1.12	-20.92	18.45	0.00	-4.50	
Profit/Risk	5.9	1 6.04	0.00	5.62		2.20		0.00	4.50	
Valuation Factor	0.48		0.00	0.39		0.00		0.00	0.00	
Upset Stumpage Pro-Rate 1	5.5		0.00	3.66		1.43		0.00	2.93	
,	e3 e3									
Final Stumpage	5.56	6.52	0.00	3.66	3,44	1.43	18.45	0.00	2.93	
Royalty rate	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Final Stpg.less Royalty	5.58	6.52	0.00	3.66	3.44	1.43	18.45	0.00	2.93	
Base AMV, \$	/m3 48.0	9 49.19	0.00	45.77	43.03	17.90	62.78	0.00	36.63	
Small Operator Indicator	N/	A NA	NA	NA	NA	NA	NA	NA	NA	
Code Type:	•	5								
Volume	m3 6547	7 709	0	1334	10308	28	6417	0	1906	27249
Total Upset Value,	\$ 3640	6 4622	0	4885	35484	40	118379	0	5 5 85	20 54 02
Total Conversion Return,	\$ 7507	8904	0	12203	66008	-524	167857	0	0	329522
Total Indicated Value,	\$ 3640	6 4622	0	4704	11537	-586	118379	0	-8573	166490

APPENDIX VII ROAD DISTANCE SUMMARIES

ROAD	SUMMA	₹Υ	A		#E!			AKE A	AREA	ROBSON	BIGHT
ROAD	ROADS OUTS!	DE AREA									
NAME	TO BE MAIN										
	FROM	TO D	ISTANCE	FROM	TO D1	STANCE	FROM	TO 5	ISTANCE		
	KM	KM	KM	KM	KM	KĦ	KM	KM	KM		
ML	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.55	.55		
ML	.55			0.00			.77				
ĦL	2.04	8.25	6.22	0.00	0.00	0.00	8.25	9.35	1.10		
M1	0.00	0.00	0.00	0.00	0.00	0.00	.17	3.69	3.52		
M11	0.00	0.00	0.0 0	0.00	0.00	0.00	1.10	1.21	.11		
M12	0.00	0.00	0.00	0.00	0.00	0.00	3.08	3.96	.88		
M12	3.63	3.96	.33	0.00	0.00	0.00	0.00	0.00	0.00		
H13	0.00	0.00	0.00	0.00	0.00	0.00	3.19	3.30	.11		
M2	0.00	0.00	0.00	0.00	0.00	0.00	.93	1.10	. 28		
H2	1.10	2.09	.99	0.00	0.00	0.00	1.98	2.42	.44		
N21	0.00	0.00	0.00	0.00	0.00	0.00	.88	1.10	.22		
M24	0.00	0.00	0.00	0.00	0.00	0.00	2.09	2.37	.28		
M3	0.00	0.00	0.00	0.00	0.00	0.00	1.21	1.32	.11		
M 4	0.00	0.00	0.00	0.00	0.00	0.00	1.60	2.04	. 44		
M5	2.09	5.04	2.97	0.00	0.00	0.00	5.06	5.17	.11		
M5:	4.02	4.18	.17	0.00	0.00	0.00	4.18	4.84	.66		
Mo	5,39	5.45	.0a	0.00	0.00	0.00	5.45	6.11	.66		
K 7	5.83	4.05	. 22	0.00	0.00	0.00	5.05	7.15	1.10		
M 8	6.82	7.48	.65	0.00	0.00	0.00	7.48	7.92	.44		
₩Ģ	ó . 00	0.00	0.00	9.00	0.00	0.00	8.91	9.19	. 28		
TOTAL			11.63	0.00	0.00	0.00	62.26	74.85	12.60		
EST.AVG.	HAUL DIST								3.62		

ROAD	SUMMA	RY	1	AREA:	#E	R 5	MB	TAKE	AREA
ROAD	ROADS BUTS		4	ROADS TO S		EÀ	** **	00:070:00	
NAME	TO BE MAIN			==-	NSTRUCTED			CONSTRUC	
	FROM	70	DISTANCE	FROM	TO D	ISTANCE	FROM	10	DISTANCE
	KM	KN	KM	KM	KM	KĦ	KM	KĦ	KM
M	0.00	28.30	28.30	0.00	0.00	0.00	28.30	31.00	2.70
Mi	0.00	0.00	0.00	0.00	0.00	0.00	28.65	29.05	.40
M2	0.00	0.00	0.00	0.00	0.00	0.00	30.50	30.60	.10
TOTAL			28.30	0.00	0.00	0.00	87.45	90.65	3.20
	HAUL DIST								29.58

On the second se

All districts of the

Ash worth wash

Application in the party of the

was full many control of

Material State of the State of

The state of the s

Shall marshall defining

Apparent and apparent and apparent and apparent apparent

ROAD	SUMMAR	₹Y		AREA:	#	LOT	223	5 1	AB E	ĒR	1	TAKE	AREA
ROAD	ROADS OUTSI	DE ARE	A	ROADS TO	SERVICE	AREA						-	
NAME	TO BE MAIN	TAINED			CONSTRUCT	ED		TO BE	CONSTRUC	TED			
	FROM	TO	DISTANCE	FROM	TO	DISTAN	CE	FROM	TO	DIS	TANC	E	
	KM	KM	KM	K	KM		KM	KĦ	KN	•	K	M	
Ħ	0.00	.55	.55	0 .0 0	0.00	0.	0 0	.55	1.78	ı	1.2	<u> </u>	
Ħ	.77	5.39	4.62	0.00	0.00	0.	00	0.00	0.00)	0.0	0	
M2	.83	1.10	.28	0.00	0.00	0.	00	1.10	1.76	ł	6	6	
K22	0.00	0.00	0.00	0.00	0.00	Q.	00	1.21	1.32	2	. 1	·	
H23	0.00	0.00	0.00	0.00	0.00	0.	00	1.54	1.65	i	. 1	1	
M6	5.39	6.16	.77	0.00	0.00	0.	00	6.16	6.38	}	. 2	2	
TOTAL EST.AVG.	HAUL DIST		6.22	0.00	0.00	ů.	0 0	10.56	12.87	,	2.3	_	

And the property of the control of t

National Control

المشترين فياليال والم

Out of the Asset o

San Share Sh

abutahakalabah

and a wall and

APPENDIX VIII CONSTRUCTION GROUP DISTRIBUTION

ROAD DISTANCE DISTRIBUTION BY SLOFE AND TERRAIN CLASS

Navigation of the Control of the Con

Topic and the state of the stat

SLOPE DISTRIBU	SLOPE	SLOPE DISTRIBUT	NOIL	31	TERRAIN DISTRIBUTION	RIBUTION				ROAD DI	STANCE D	ROAD DISTANCE DISTRIBUTION	*	
AREA	0-35	36-65	99(2	м	**	TOT.ROAD Length KM	0-35	2 0-35	2 2 3 0-35 36-65 36-65	29-92	799	* 99
ER 5 MB TAKE AREA AVG.SLOPE AVG.DISTR	6.32 86.36	40.00	100.00	43.64	31.82	0.00	₩? ₩?	3.2	2.04	2.	. 29	0.00	0.00	<u>**</u>
ER I ROBSON BIGHT AVG., SLOPE AVG., DISTR	12.81	50.37	89.33	42.68	40.24	7.32	9.16	12.6	60 10 10	11.	* E	0.00	860	1.23
ER I LOT 223 MB AV6.SLOPE AV6.DISTR	6.51	48.75	92.73	06.19	27.62	55 100 100	6.67	2.31	1.43	4.	æ	0.00	60.	51.
TFL 39 NB RECEIVE AVG. SLOPE AVG. DISTR	20.69	47,14	78.00	60.61	33, 33	,0°	5	14.77	8. 5.	2.98	1.94	ä	09.	i.

APPENDIX IX

LOG PRICE TREND - POLYNOMIAL CURVE FIT

HEMLOCK # 3 - EXAMPLE

COFI Log Price Trend

Species & Srade: HEMLOCK # 3

Equation: $y=A+Bx+e(x^2)$ $y=(46.74580) + (-2.01785)(x) + (0.022403)(x^2)$

YEAR: 60 64 68 72 76 79 86 81 82 83 84 \$/HJ: \$6.33 \$9.37 \$13.13 \$17.60 \$22.79 \$27.16 \$28.70 \$30.29 \$31.92 \$33.60 \$35.32 \$36.20 \$37.09 \$/CCF: \$17.92 \$26.53 \$37.17 \$49.84 \$64.54 \$76.90 \$81.27 \$55.77 \$90.40 \$95.15 \$100.03 \$102.52 \$105.04

APPENDIX X LOG PRICE TREND - NATURAL LOGARITHM CURVE FIT HEMLOCK # 3 - EXAMPLE

Results of Curve Fit 14:16:05 08-01-1985

Dependent variable = 7

HEMLOCK #3

LN((v/L)/[1-(v/L)]) = m*t + t

R-squared = .91 $^{\circ}$

where:

v = value of variable

t = time

.08309

b = -2.668492L = 100

			Table	of Residual	5	
Data	Point	Actual	Value	Calculated	Value	Residual
	1		7.708		7.008	0.700
	7		7.731		7.570	0.161
	3		7.952		6.172	-0.220
	4		8.494		8.817	-0.324
	5		10.723		9.509	1.214
	6		11.329		10.248	1.081
	7		10.523		11.038	<i>-0.</i> 515
	8		10.603		11.881	-1.278
	9	v	12.945		12.779	0.166
	10		14.177	•	13.734	0.443
	11		11.978	•	14.748	-2.770
	12		12.378		15.824	-3.446
	13		15.853		16.962	-1.109
	14	•	19.494		18.165	1.329
	- 15		19.186		19.433	-0.246
	16		19.352		20.767	-1.414
	17		21.058		22.167	-1.109
	18		22.386		23.634	-1.248
	19		25.465		25.166	0.299
	20	"	37.570		26.763	10.807
	21		41.550		28.422	13.128
	22		31.809		30.143	1.666
	23		32.580		31.921	0.660
	24		29.060		33.753	-4.693
	25		29.731		35.635	-5.904
	26		34.579	•	37.563	-2.983

APPENDIX XI LOG PRICE COMPARISON AND SUMMARY

Species	Grade	Polynoa	Natural Logar	ithm	Aver		Actual al	i-time	Selected	. -
		1940/85			Last 5-yr	6-mos'85	high (and	n.avg.)	AHV	Comments
		\$/a3	\$/ m 3	R^2	\$/#3	\$/ a 3	\$/m3	Year	\$/a3	
Balsam	C.D	62.27	62.00	0.918	55.13	53.32	63.67	1980	60.09	1983
	C	58.88			53.94	48.46	56.07	1983	56.82	PR 1983
	D	71.31			54.01	59.29	67.43	1983	68.81	
	Н	55.08		0.935		46.57	53.79	1982	53.78	LN
	I,J,X,Y	34.63		0.864		33.88	33.88	1985	33.88	
	1	46.86			41.65	41.43	43.56	1982	45.85	
	J	33,91			30.19		33.13	1985	33.18	*
	1	22.77			20.47	25.18	25.18	1985	22.28	
	¥	15.61			12.94	15.38	15.90	1981	15.27	*
Cedar	ů	91.59	90.94	0.927	78.54	83.11	91.87	1983	70.84	LN
	F	88.34	87.86	0.935	75.58	81.56	90.23	1983	87.86	
	Η -	73.10	74.15	0.924		62.07	76.53	1983	74.15	
	k	72.20	70.40	0.285	61.40	43.72	71.68	1979	70.40	
	<u>.</u>	59.85	58.61	0.889	51.28	51.86	56.34	1779	58.61	*
	H/L								66.89	PR LN
	M, I, J, X, Y	48.62	50.11	0.885	41.04	38.35	53.47	1979	50.11	LN
	M/ I								55.24	FR LN
	Ħ	46.35	47.77		38.52	38.30	44.77	1984	47.77	*
	I	62.58	64.50		52.91	50.78	66.84	1983	64.50	*
	3	51.26	52.83		43.54	41.64	55.34	1983	52.83	
	X	22.54	23.23		18.96	17.94	22.54	1983	23.23	*
	Ą	3.74	3.86		3.10	1.73	4.40	1981	3.86	•
Cypress	D.E	228.94	304.50	0.405	255.01	228.27	365.94	1980	394.50	LN
	0	232.63	309.40		260.30	229.83	291.24	1983	309.40	PR LN
	Ē	202.50	269.33		227.30	169.90	264.88	1981	269.33	н
	F,8,H	129.75	141.69	0.137	118.76	105.64	224.59	1979	127.79	1983
	F	197.30			179.82	165.62	197.65	1981	194.32	PR 1983
	6	157.98			145.74		188.51	1981	155.60	•
	Н	114.69	125.47		105.23	93.69	130.03	1981	113.16	
	H/I								102.40	
	I,J,X,Y	50.83		0.229		33.83	73.66	1979		10-yr avg
	I	91,44			63.90		79.57	1981	81.67	* PR
	j	47.12			33.09		43.55	1981	42.09	
	I	24.43			17.33	15.05	24.18	1981	21.82	*
	Y	3.17	2.25		2.30	3.24	4.39	1981	2.83	*

Species	Grade	Polynom N	atural Loga				Actual al			
		1960/85	1950/85	3	Last 5-yr	6-405'85	high (ann	.avg.)	VMA	Comments
		\$/#3	\$/a3	R^2	\$/#3	\$/#3	\$/ a 3	Year	\$/#3	
Fir	A	151.92	129.42	0.902	134.94	183.77	183.77	1985	151.92	Polynom.
	B	107.56	101.13-	0.935			124.24	1985	107.56	
	C	74.85	78.27	0.912		64.56	80.23	1980	74.85	
	0	115.36	97.64	0.881		131.73	131.73	1985	115.36	
	Н	63.04	63.86	0.903		56.23	68.23	1980		
	1.J.X.Y	34.42	35.22	0.832		29.32	44.80	1979		
	1	52.55	53.77		45.60	46.30	50.21	1981		
	J	37.38	38.25		30.16			1981		
	X	20.55	21.03		22.14			1981		
	Ÿ	10.38	10.63		17.24		14.72	1981	10.38	
Hemlock	D	67.80	64.20	0.918	57.64	61.28	66.32	1980	64.20	LN
	H	57.08	55.35	0.899		47.05		1980		
	I,J,X,Y	38.20	37.56	0.913		34.35		1980		
	1	48.55	50.38		42.18	41.82	43.84	1982	50.38	
	J	34.67	35.97		30.16	32.89		1985		
	X.	25.25	26.20		22.14	25.36		1985		
	Y	19.65	20.40		17.24	23.62	23.62	1985		
Pine	Đ	41.74	36.32	0.792	37.83	42.42	42.42	1985	41.74	Polynom.
	Н	31.79	28.80	0.804		30.00	31.77	1981	31.79	#
	1,3,1,4	18.71	17.72	0.683	16.85	16.50	22.21	1980	18.71	
	I	26.34	24.95		23.62	23.45	28.95	1981	26.34	* PR
	J	17.90	16.95		15.68	15,92	19.03	1984	17.90	*
	X	13.48	12.77		12.32	13.23	15.40	1981	13.48	*
	Y	3.50	3.31		3.21	0.02	6.58	1982	3.50	•
Spruce	D.E	225.67	248.37	0.829	186.96	196.26	302.27	1979	248.37	LN
	Đ	227.20	250.06		188.33	196.57	262.46	1980	250.06	PR LN
	E	185.75	204.43		153.16	171.35	179.39	1981	204.43	ĸ
	F,6,C,H	104.31	109.72	0.828	86.37	90.49	133.24	1980	109.72	LN
	F	176.82	185.99		146.94	145.28	195.28	1981	185.99	PR LN
	6	169.17	177.94		141.03	165.53	179.48	1981	177.94	*
	C	87.17	91.69		71.96	81.54	82.36	1981	91.69	*
	H	86.55	91.05		71.32	78.50	79.71	1981	91.05	
	H/I								85.61	
	1,J,X,Y	42.03	46.16	0.873		39.87	59.39	1980	46.16	
	I	66.60	73.15		54.66	60.36	60.35	1985		
	J	34.59	37.99		28.69	31.15	31.15	1985		
	X	29.52	32.42		24.39	31.32	31.32	1985		
	A	9.82	10.78		7.80	2.62	15.66	1981	10.78	*

Polynomial Curve: y=A+Bx+C(x^2)

Natural Logarithm Curve: LN((y/L)/((1-(y/L)))≈Ax+B

y = \$/m3, x = year(time), L = estimated upper value limit

PR=Pro-rated value

APPENDIX XII PRODUCTIVE CAPACITY EXCHANGE SUMMARY

	Ann.y1#10
er Gr	NOF FIT 'B" N.A.I. Cul.age
	CROWN FUREST Cul. age Ans, yield
	Hap Forest Establ Stand age Stonth Site Site Area in Meighted S.L. Type type Year 1985 type grp Index fige ha 100 S.L. Mile B GROWN FOREST MOFFILT'S" 100 S.D. Mile B GROWN FOREST MOFFILT'S MOFFILT
	10 8,A.1. C
	Site Area in Melphted 5.1. (19ex 1ype ha 100 5)
	Site Area in Index Type ha
	Site Index
	Site
IT EICHANGE	Establ Stand age Growth Sate tear 1985 Type grop Index 1000
DUCTIVE CAPACI	Establ Star
ISITIKA - NB PRODUCTIVE CAPACITY EXCHANGE	Rap Forest Type Type

Ar 22.
RECEDIO
LAKE
SONNOS D

8 F6C381	1665	₹,	+ 4	23	58		9,0	0.0	19:1	201	0.50	5.	11	0.00	တ ထ	99	0.00
B CEMES	1600	ķŢ	ir.s	#7	23		9.0	ů,¢	1.42	*	06'0	10.03	77	8.8	<i>⊙</i> .	÷.	
1 DSD-M C7M3	1969	9	S	E	23	9.6	297.0	207.0	7.69	60	69.21	6.23	1.1	56.37	-0	891	
P DSD-# C7H3	1980	'n	'n	F.5	22	21.5	709.5	454.5	7.59	eria DEG	165,34	6, 23	::	133, 95	6,1	108	
E7H3	1685	ķ	'n	33	23	2.4	82.8	38,8	7.69	cii	19.99	6.23	13	16.20	å, š	108	
3 CBH2	1485	π [‡] s	m	Ξ	75		9.0	0.0	9.80	9.6	00.0	5.51	11	0.00	-,	108	
L CSH381	1685	'n	4 73	3	77	3.0	9.0	65.0	. o.0	\$	19.50	5.16	()	15.48	 6.	50	
2 CSHS	1968	5	דע	9	21	25.1	783.0		6.80	90	172,74	3.15	11	134.68		108	****
CSH4F1	1685	ψ'n	ų~	£-,	Dr.	(14 147	.6	35 8, 8	er er	47	28,55	1.19	22	21.79	eo -	===	
COMSES	1685	67 1	ir)	£2*	16		5.7	23.23	\$0.7 *	<u></u>	6.87	3.05	11	5.15	00g	=======================================	
C584C1	1685	ş	v	:3	9.	3	20.1	* * * *	** **	101	3,64	5	13	2,75	100 100	Ξ	
5 HF01	1963	33	-0	CO	3	5.5	504.0	346.5	13.74	Z.	144.27	13.06	11	137,13	12.8	2	-
H581	1966	13	-63	. 6#	13	.0	124.8	85,8	13,74	55	35,72	13,06	11	33,94	17.8	-S	
1401	1963	22	۵		13	5,6		00 00	12,74	55	76.94	13.66	11	73,14	12.8	35	
H9C1	1966	1.5	م	42	; - ;	in ici	271.4	197.4	5.0	ુ	73, 34	12.01	11	70,36	17, 9	Ÿ	
1361	1966	<u>6-</u>	~	9#	E.	CC7	910.8	813.8	12.43	9	246.11	12.01	11	237.80	2.5	÷0	~4
H591	1982	٠.,	•	50 100	75.	p-	216.6	148.2	9,36	77	53.33	9.67	Ħ	24.64	9.8	ž	
. H981C1	1961	77	- 20	ř	£,1	2.2	79.2	55.0	8.83	75	19.38	7.48	11	16.28	6.6	26	
HSB1C1	1741	.	φ.	5	<u>*</u>	7	296,1	197.4	3,13	120	14, 13	2.54	11	33.83	2,43	4	
1 H7E2C1	1991	17	r~	8	R	4.6	120.8	151	13.74	g	63.20	13.06	73	80.08	1.1	36	
H782C3	1991	7.1	* ~~	€D.	2.7		27.8	2.92	13,74	27.3 E.3	15,11	13,06	17	15° ±	7 :	.0	
12Z8UH	1900	<u>\$</u>	***	4	73	Er-	685.4	491.3	=======================================	99	137	12.01	11	173.95	+ '	98	
H783	199	23	,.	ş	, , ,		121.5	t-1	.;	9.6		11,50	12	31.05	1,1	40	
K7C7F1	1300	5.	٠	Ŧ.	<i>5</i> 75	**3 6*3	238.5	154,3	11.43	ê()ê	65.38	8	1,1	26.09	=	26	
H782E1	¥85.	.73	,-	÷	E-TS	£ 4	414.0	185, 2	្ន	୍ଷ	114,35	11.50	11	105.80	-	35	
: H783	1984	77	~	:	P.	→	146.2	38.6	11.24	40	38.23	10.51	11	35,73	- - -	\$	
H583C1	1885	ψŗ	-	9	٢,	: 1	- Q - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	27.8	12.	'n	72.17	10, 21	11	86.18	=	ŝ	
H7#261	1365	0 ;	- -	47	er-	13.4	673	3.83.	11,24	÷6	139,38	19,03	11	121,37	- :	.63 197	
280.35H	585	ų,	ę	۶	75	ú	177	10 C	E#.	22	100	, E.	1.	170.31	*.	er er	
	1955	61	* - ·	Sec.	ė	C13	188	8,6	, e	<u>(</u> -4	28.93	en e	13	200	→ -6	;	
H7BZC1	1956	6	r-	99	9.4		501.6	24.5	-0 -7 -0	77	123,55	**	11	108.77	*	œ c+	
HICIBI	1364	<u>e</u> .	۴	je.	:4	1,57	785.2	\$60.4	9.	£	227,74	8,24	11	254,39	÷.	8	
137828	1964	77	~	(B)	a	e.	1497.2	1024.4	, r.	7.5	368.78	ф *	77	324.66	\$.\$	6101 C7	74
11.03	6903	91	Prop	F9	13	44.1	1455.3	1014.3	6.0	83	339, 13	6.73	t- 7	274,74	9.4	48	-
93.03	1986	D-	1	B	13	0	96.0	46.0	69.5	늞	門に	6.23	11	52.46	ð.	0°	
H7C3	1955	2	₹~.	:0	13	:	39.6	27.4	7.59	ens ens	9.73	6.33	r	7. 49	ð. 4	æ	
H703	1960	£.	s-~.	<u>;</u> :	64	:> (1)	3.90.0	9.47	7,14	r⊆ ore	57.17	£60.	11	\$5.0\$	*	00 6-	-
HeC321	1485	ψ	P~	6.4	23	60 43	£33.2	316.0	9,00	55	€	E	11	76.31	4.4	8	
H103	1766	6.1	,	٤,	07	רע עע	155,7	114.0	6.30	ž?	2	4.83	17	27. 53	•	en e-	
125.55	1971	*	r-	53	100	÷, 54	179.1	117.4	56.3	2	¥. 11.	6.7	<u> </u>	26.40	60	102	
52 HSL282	1635	'n	r-	r-+	œ	3.		34.2	€. 39	100	9,48	4 .19	11	7.76	œ.	102	
110.00.784	3 50 1	0.	, .	ď	čc	1	0.0	- K	4 03	100	17. 47.	C	F	10.50	C.S.	£	

April Control of the

Thinger Type ha 100 50 N. N. B. Chouse formative of mail and ma	Strong range Index Index	Map Forest	Establ S	Establ Stand age Growth	Growth	Site	Site	Area 1R	i qb tag	ted S. I.			==	H. A. 1.					
5 7 2.6 18 2.5 59.8 41.4 4.34 100 11.48 3.89 777 5 7 18 1.2 2.5 35.2 34.8 2.53 140 1.64 3.65 777 5 7 18 1.2 2.5 35.2 34.8 2.53 140 1.64 3.65 777 14 7 1.6 11 3.2 35.2 34.2 1.81 145 2.69 1.77 19 7 1.6 11 3.2 35.2 34.2 1.81 145 3.98 77 19 7 1.6 11 3.2 35.2 34.2 1.81 145 3.98 77 19 7 1.6 11 3.5 2.94.2 1.81 145 3.79 1.49 77 10 1.1 3.5 3.64.4 10.34.4 10.44 1.81 145 1.49 77	1465 -5 7 25 16 2.5 59.8 4.14 4.39 100 11.66 3.69 77 2.89 4.8 192 192 192 193 19	and and a	F 68	1885	date edi	100 100	Index \$3	Type ha	100	S.	4	# 4 55	40.01.884	#.A.I.	CECNA FOR	EST Ann. Field		- 8. II.	Ann. fire
-5 7 23 16 3.9 25.7 14.4 4.34 104 3.64 3.05 777 -5 7 18 12 2.8 55.2 34.8 1.33 140 6.47 1.66 77 14 7 16 11 9.4 150.4 1.81 145 3.96 1.49 19 7 16 11 2.2 24.2 1.81 145 3.96 1.49 19 7 16 11 2.2 24.2 1.81 145 3.96 1.49 19 7 16 11 24.2 273.9 1.81 145 3.96 1.49 10 11 24.2 25.2 24.2 1.81 145 77 10 11 24.4 70.4 48.4 1.81 145 77 10 11 24.4 70.4 48.4 1.81 145 77 10<	1985 -5 7 22 18 23-7 14-4 4-34 104 13-6 3-55 77 2-75 4-8 192 1945	18+054 (S	1685	ń.	₹.	79	. =	rì	93.68	*	*	100	11.43	C-	E	en en	æ; →	101	
5 7 18 12 2.9 52.2 34.8 2.23 146 6.47 1,66 77 14 7 16 11 14.4 53.2 34.4 165.3 1,81 145 26.97 1,49 77 19 7 16 11 2.4 53.2 34.2 1.81 145 26.97 1,49 77 20 7 16 11 2.4 276.4 275.9 1.81 145 45.07 1,49 77 20 7 16 11 2.4 776.4 1.81 145 45.07 1,49 77 22 16 16 11 2.4 77.2 1.81 1.81 149 77 22 16 16 57.2 11.83 6.2 6.36 6.26 6.26 1.49 77 22 16 16 11.81 16 1.81 1.81 1.82 1.49	1945 -5 7 18 12 2.5 25.2 34.8 2.23 146 6.47 1.66 77 4.8 102 102 192 193	58 HSC491	1685	ų, r	-	27	-92	~			¥.0.4	3	3.64	\$30°	7.	- i	**	102	£;
14 17 16 11 14.9 138.4 163.9 1481 145 26.97 1,49 77 15 11 9.4 150.4 163.4 1,81 145 17.01 1,49 77 16 11 24.2 25.2 24.2 1,81 145 17.01 1,49 77 16 11 24.2 258.4 273.9 1.81 145 129.42 1,49 77 15 16 11 24.2 258.5 1,81 145 129.42 1,49 77 15 16 11 24.3 104.4 88.4 1.81 145 129.42 1,49 77 15 15 16 11 24.4 104.4 188.5 1,81 145 129.42 1,49 77 16 13 21.6 578.4 102.40 11197.5 7,20 5750.95 6,26 16 5 12 8 0.5 6.3 4.0 0.68 199 0.34 0.84 77 16 5 12 8 0.5 6.3 4.0 0.68 199 0.54 0.84 77 16 5 12 8 0.5 6.3 4.0 0.68 199 0.54 0.84 77 16 7 14 10 30.3 424.2 303.0 0.88 190 0.54 0.84 77 17 18 18 226.8 130.2 0.88 190 0.54 0.84 77 17 18 18 226.8 230.3 0.40 1.60 1.16 0.84 77 17 18 18 226.8 230.3 231.2 0.88 190 1.28 0.84 77 17 18 18 226.8 230.3 231.2 0.88 190 12.85 0.31 77 17 18 18 25 226.8 230.3 230.3 230.3 230.3 230.3 230.3 230.3 17 18 18 226.8 230.3 230.3 230.3 230.3 230.3 230.3 230.3 230.3 230.3 17 18 18 18 226.8 230.3	1971 14 7 16 11 14.9 238.4 165.7 1.81 145 26.97 1.49 77 22.20 4.6 102 1966 19 7 16 11 24.5 238.4 165.4 1.81 145 26.97 1.49 77 2.20 4.6 102 1966 19 7 16 11 24.5 238.4 273.2 4.81 145 45.07 1.49 77 271.10 4.8 102 1963 22 22 24 24 27.2 24.2 1.81 145 45.07 1.49 77 271.10 4.8 102 1963 22 22 24 24 27.2 24.2 1.81 145 27.8 1.49 77 271.10 4.8 102 1963 22 22 24 24 27.2 24.2 1.81 145 27.8 1.49 77 27.2 4.8 102 1964 16 23 20 2.4 17.2 1.82 2.2 2.2 2.2 2.2 2.2 1968 16 5 12 21.6 51.84 1.82 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1969 19 7 11 12 8 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1964 21 7 11 7 12 8 12.2 2.2	\$37.80 X 45	1905	Α'n	r-	œ	3	6- 13	2.2	80 **	2.23	941	6.47	1. 60	F.	4.87	*	107	13.9
	1766 19 7 16 11 2,4 150,4 103,4 148 145 17,0 14,0 1,49 77 14,0 4,8 102 1964 19 7 16 11 3,2 394,2 234,2 1,81 145 45,0 1,49 77 37,10 4,8 102 1963 20 7 16 11 71,5 1144,0 786,5 1,81 145 172,4 77 14,0 77 14,0 4,8 102 1963 22 16 13 3,4 70,4 48,4 1,81 145 172,4 1,49 77 16,54 4,8 102 1963 22 16 13 3,4 70,4 48,4 1,81 145 1,29,4 77 1,49 77 16,54 4,8 102 1964 16 5 14 10 18,9 264,6 189,0 1,49 77 21,55 1,11 150 1968 19 7 12 8 0,5 4,8 10,8 77 1,47 77 1,45 1,11 150 1968 19 7 12 8 0,5 4,8 10,8 10,8 77 1,47 1,11 150 1968 19 7 11 7 2,4 2,4,6 190,0 1,40 10,11 77 21,55 1,11 150 1968 19 7 11 7 8 10,3 23,4 1,11 150 1968 19 7 11 7 8 18,9 2,54,6 1,40 1,40 1,10 1,40 1,10 1,40 1,10 1,40 1968 19 7 11 7 8 18,9 2,54,6 1,40 1,10 1,40 1,10 1,40 1,10 1,40 1,10 1,40 1,10 1,40 1,10 1,40 1,40 1,10 1,40	439H 19	1471	=		91	Ξ	¥.4	# :82 Y	9.591	1.8	145	26.92	1.49	77	22.20	##	102	71.5
19 7 16 11 2.2 24.2 1.81 145 3.96 1.49 777 19 7 16 11 24.9 278.4 273.9 1.81 145 45.07 1.49 777 10 7 16 11 4.4 70.4 80.4 1.81 145 129.4 1.49 777 10 7 16 11 4.4 70.4 80.4 1.81 145 7.94 1.49 777 10 31.3 21.6 5(P.4 10.244.0 1195.5 7.20 5770.97 6.26 10 4 7 7 7 8 1.4 7 7 10 10 10 10 10 10 10 11 4 7 7 7 7 11 12 8 13.7 20.4 19.0 1.40 1.40 1.14 777 12 13 13 22.6 40.3 15.7 20.6 190 0.51 0.71 777 13 14 10 18.9 27.2 0.68 190 0.54 0.71 777 14 10 10 20.4 40.3 1.40 1.40 1.14 777 15 17 18 18.9 226.3 151.2 0.88 190 1.14 777 11 7 6.9 75.9 46.3 0.37 210 2.55 0.71 777 12 13 13 226.4 15.9 46.3 0.37 210 2.55 0.71 777 13 14 15 15 15 15 15 15 15	1966 19 7 16 11 2,2 25,2 24,2 1,481 145 2,596 1,49 77 2,29 4,8 192 1964 1965 19 7 1,49 77 37,10 4,8 192 1965 1965 1,49 77 37,10 4,8 192 1965 1,49 77 37,10 4,8 192 1965 1,49 77 77 77 77 77 77 77	739H 82	1766	5.	r ~	13	Ξ		150.4	03.4	8,1	9	17,01	1,49	7.	14,01	**	102	2
19 7 16 11 24.8 278.4 173.9 1.81 145 45.07 1.49 77 20 7 16 11 71.5 1144.0 786.5 1.81 145 17.4 77 22 16 13 17 1.04 48.4 1.81 145 77 1.49 77 22 16 15 1.14 10.4 48.4 1.81 1.83 6.23 77 1.49 77 31.3 21.6 510.4 10.244.0 1197.5 7.20 5750.9 6.26 6.26 77 4 0.4 0.24 1.4 1.4 77 7.20 5750.9 6.26 6.26 77 5 14 10 18.9 26.46 189.0 1.60 160.9 6.26 1.14 77 16 5 14 10 18.9 26.46 189.0 1.60 1.60 26.46 1.14 <td> 1946 19 7 16 11 24.5 279.4 273.7 1.81 145 45.07 1.49 77 37.10 4.8 102 1945 195 23 23 23 23 24 23 24 24</td> <td>64 M6C381</td> <td>9961</td> <td>-</td> <td>*~</td> <td>0</td> <td></td> <td>e i</td> <td>35.2</td> <td>2</td> <td>50</td> <td>\$</td> <td>38</td> <td>1.49</td> <td>13</td> <td>60°</td> <td>÷.</td> <td>101</td> <td>10.5</td>	1946 19 7 16 11 24.5 279.4 273.7 1.81 145 45.07 1.49 77 37.10 4.8 102 1945 195 23 23 23 23 24 23 24 24	64 M6C381	9961	-	*~	0		e i	35.2	2	50	\$	38	1.49	13	60°	÷.	101	10.5
1	1965 20 7 16 11 71.5 1944.0 786.5 (1.81 145 129.4) 147 77 166.54 4.8 192 193 195 149 77 6.56 4.8 192 195 1	36 HSC5	1986	<u>0-</u>	~	-0	=	5.5	365	273.9	2	35	(6,5)	1.49	77	37,10	æ. ₩	101	119.5
15 16 11 4.4 70.4 48.4 1.81 145 7.96 1.49 77 15 15 21.6 5/6.4 10.244.0 11197.5 7.20 5/750.95 6.26 16 25 14 10 18.9 7.2 6.68 199 0.34 0.84 77 16 5 12 8 0.9 9.7 7.2 0.68 199 0.34 0.84 77 16 5 12 8 0.9 9.7 7.2 0.68 199 0.44 77 16 7 14 10 30.3 42.4 50.5 140 150 1.16 0.71 77 17 18 18 18.9 5.26 46.3 0.37 2.10 2.55 0.21 77 18 18 18 226.4 15.9 0.48 190 0.54 0.84 77 19 10 10 10 10 10 10 10	1963 15 7 16 11 4.4 70.4 48.4 1.81 145 7.96 1.49 77 6.56 4.8 102 195	SP Medual	1965	ST.	5-4 .	**	=	71.5	\$ 144°.	186.5	#	9	179.47	-	11	\$.50 (5)	- CO	192	345.2
22 16 53 70 3.4 (78.2 16.0 11.83 62 65.88 6.23 77 31.3 21.6 5(8.4 16.244.0 11195.5 7.20 5770,95 6.26 0.4 0.4 0.4 0.3 1.4 0.6 0.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	1963 22 16 53 50 53.4 1875 18.20 11.83 62 65.56 6.25 77 53.64 7.2 41.85 7.20 7.50,47 6.25 6.25 7.20 7.20,47 7.20 7.20,47 7.20 7.20,47 7.20 7.20,47 7.20 7.20,47 7.20	264 HoC381	- 1970	12		9	::	7	10.4	80	=	<u></u>	7.96	3.49	11	6.56	· ·	102	71.
\$1.3 21.6 \$18.4 \$624.0 \$1199.5 7.20 \$750.97 6.26 0.4 0.4 0.5 0.5 2.6 1.4 0.6 0.7 2.6 1.4 0.7 1.4 0.6 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 0.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	Secrive Area 31.3 21.6 5/8.4 16.244.0 11197.5 7.20 5/70,97 6.26 5/26.25 6.94	11 010	1963	22	91	22	33	9-7	178.2	162.0	11,83	62	63.88	6.23	11	33.64	7	=	88
0.4 0.4 0.5 1.6 1.6 1.6 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1969 16 5 14 10 18.9 26.4 189.0 1.40 160 26.4 1.11 77 21.55 1.11 150 1968 16 5 14 10 18.9 26.4 189.0 1.40 160 26.4 1.11 77 21.55 1.11 150 1968 17 5 11 8 0.5 6.7 0.6 190 0.51 0.8 77 1.45 1.11 150 1968 17 5 11 8 0.7 7.2 0.6 190 0.51 0.8 77 1.45 1.11 150 1968 19 7 1 12 8 1.2 0.2 0.0 10 10 11 190 0.5 1 17 1.45 1.1 150 1968 19 7 1 12 8 18.9 226.3 151.2 0.6 190 1.16 0.8 77 1.45 1.1 150 1968 19 7 1 12 8 18.9 226.3 151.2 0.6 190 12.8 0.8 77 1.45 1.1 150 1968 19 7 1 12 8 18.9 226.3 151.2 0.6 190 12.8 0.8 77 1.45 1.1 150 1968 19 7 1 12 8 18.9 226.3 151.2 0.8 190 12.8 0.8 77 1.4 1 150 150 150 150 150 150 150 150 150 1	Total Productive	- Receive Ar	4		17.	9712	12 (12 (12	16244.0	\$136111	7.20		3730.93	6.26		3246.25	#6.4		3596.76
1.6 5 14 10 18.9 264.6 189.0 1.40 160 26.46 1.14 77 1.0 18.9 2.6.6 1.14 77 1.14 77 1.14 1.0 30.3 6.4.6 13.0 6.68 199 0.34 0.84 77 1.14 10 30.3 6.4.6 13.0 6.68 199 0.51 0.71 77 1.1 18 10 30.3 6.4.2 30.30 1.40 157 6.5.1 1.14 77 1.1 18 10 30.3 6.4.2 30.30 1.40 157 6.5.1 1.14 77 1.1 18 18.9 2.5.8 151.2 0.48 190 1.16 0.84 77 1.1 18 18.9 2.5.8 151.2 0.48 190 1.16 0.84 77 1.1 1 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 77	9.46 1.44	71 Urban (GP)						÷					i,						
1. 6.3 2.6 1.6 1.6 5. 14 10 18.9 264.6 189.0 1.40 160 26.46 1.14 77 16 5 12 8 0.5 6.0 4.0 0.68 199 0.54 0.84 77 17 5 11 8 0.9 8.9 7.2 0.68 199 0.14 0.71 77 18 6 12 8 4.7 20.4 15.6 0.68 199 1.16 0.71 77 19 7 12 8 18.9 226.8 151.2 0.68 199 1.26 0.84 77 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77	1969 16 5 14 10 18.9 254.6 1.14 77 21.55 1.1 150 1968 14 77 21.55 1.1 150 1968 15 15 17 14 10 18.9 2.3 4.0 0.68 190 0.54 1.14 77 21.55 1.1 150 1968 19 1.1 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 19 1.1 1.1 19	74 (yrban (6P)						4.0											
2.6 1.4 1.4 1.4 1.4 1.4 1.6 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	1.4 10 18.9 264.6 189.6 1.40 160 26.46 1.14 77 21.55 1.1 150 1969 16 5 12 8 0.5 6.7 6.08 199 0.53 0.84 77 21.55 1.1 150 1986 15 5 12 8 0.5 6.7 6.08 199 0.64 0.71 77 0.42 1.1 150 1986 19 7 1.4 7 1.4 7 1.4 7 1.4 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.5 1.1 1.5	78 Urban (6P)						6,3											
1.4 0.4 0.4 0.4 1.6 5 12 8 0.5 6.9 189.0 1.40 160 26.45 1.14 77 17 5 11 8 0.9 24.6 189.0 1.40 160 0.34 0.84 77 18 10 9.9 4.9 7.2 0.68 190 0.51 0.71 77 18 10 30.3 42.4 2 30.50 1.40 159 6.45 1.14 77 19 7 12 8 18 187 226.8 190 0.48 190 1.16 0.84 77 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77	1.4	72 Swamp						2.4											
0.4 10 18.9 264.6 189.0 1.40 160 26.45 1.14 77 14 10 18.9 264.6 11.40 160 26.45 1.14 77 17 18 0.5 4.0 6.68 190 0.34 0.84 77 17 2 11 8 0.9 4.8 7.2 0.68 190 0.61 0.71 77 18 10 50.3 4.24.2 30.30 1.40 15.7 42.4 1.16 0.84 77 18 18.9 2.56.3 151.2 0.68 190 1.16 0.84 77 18 18.9 2.56.3 151.2 0.68 190 12.95 0.84 77 18 7 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 77 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 77 77 77 77 77 77 77 77 77 77 77 7	1969 16 5 14 10 18.9 264.6 189.0 160 26.45 1.14 77 21.55 1.1 130 1968 19 6.34 0.84 77 0.42 1.1 130 1968 17 5 12 8 0.4 1.2 0.48 190 0.61 0.71 77 0.44 1.1 130 1964 19 7 7 14 10 30.3 424.2 30.30 1.40 157 6.42 77 1.45 1.1 130 1964 11 7 14 10 30.3 424.2 30.30 1.40 157 6.44 77 1.45 1.4 1.1 1.5 1.4 1.4 1.1 1.5 1.4 1	73 Seamo						-											
16 5 14 10 18.9 264.6 189.0 1.40 160 26.46 1.14 77 17 5 12 8 0.5 6.0 4.0 0.68 189 0.54 0.84 77 18 19 9.9 9.9 7.2 0.68 189 0.54 0.71 77 19 7 12 8 18.9 256.3 151.2 0.68 190 1.16 0.71 77 19 7 12 8 18.9 256.3 151.2 0.68 190 12.95 0.71 77 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 12 13 14 15 15 15 15 15 15 13 14 15 15 15 15 15 15 15 15	1949 16 5 14 10 18.9 264.6 18.9 0.58 1.9 0.54 0.14 77 21.55 1.1 150 1969 156 1.14 77 21.55 1.1 150 1969 1969 1.14 77 21.55 1.1 150 1969 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1969 1.1 1.1 1969	7.5 Swano						0											
16 5 12 8 0.5 6.0 4.0 0.68 199 0.34 0.84 77 17 18 0.9 9.9 9.9 7.2 0.68 199 0.54 0.71 77 17 18 0.9 9.9 9.9 17.2 0.68 199 0.14 0.71 77 17 18 10 30.3 424.2 305.0 1.40 157 42.4 1.14 77 11 18 18 18.9 226.8 151.2 0.68 190 1.16 12.85 0.84 77 12 1 1 7 0.9 15.9 48.3 0.37 210 2.55 0.71 77 17 11 7 0.9 15.9 48.3 0.37 210 2.55 0.71 77 17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1964 16 5 12 8 0.5 6.0 6.0 190 0.34 0.84 77 0.42 1.1 150 1788 17 5 11 8 0.94 7.2 0.68 190 0.61 0.71 77 0.64 1.1 150 196 190 0.61 0.71 77 0.64 1.1 150 196 190 0.61 0.71 77 0.64 1.1 150 196 190 1.2 1.4 1.1 1.2 1.4 1.1 1.2 1.4 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3	1913 87	1969	9:	**	±	10	60	264.6	183.0	1.60	160	26.45	1.14	11	21.55	<u></u>	25	70,71
17	1946 17 5 11 9 9,9 9,9 7,2 0,68 190 0,61 0,71 77 0,64 1.11 150 156	25 Car4	1966	91	ψħ	11	æ	0	-6	0°+	99.0	661	# TO	*8***	12	0,43	ij	22	10
19 6 12 8 1.7 20.4 13.6 0.68 190 1.16 0.84 77 15 16 7 17 18 10 30.3 424.2 303.0 1.40 157 42.4 1.14 77 17 12 8 18.7 226.8 151.2 0.68 190 12.85 0.84 77 17 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 17 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1946 19 6 12 8 1.7 20.4 15.6 0.66 190 1.16 0.84 77 1.45 1.1 (5) 1949 15 7 14 10 30.3 424.2 30.30 1.40 157 42.45 1.14 77 34.54 1.1 150 17.85 1.1 1.50 1.2 1.40 1.2 1.40 1.7 1.44 77 34.54 1.1 1.5 1.1 1.5 1.4 1.7 1.4 1.7 1.4	16 0342	1958	<u> </u>	8 7	==	σtr	6	O-	7.2	0.68	3	0.61	0.71	17	0.84	_;	î	\$. 98 5. 98
16 7 14 10 30.3 424.2 305.0 1.40 157 42.45 1.14 77 19 17 12 8 18.9 226.8 151.2 0.48 190 12.85 0.84 77 17 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 835.8	1949 16 7 14 10 30.3 424.2 202.0 1.40 157 62.42 1.14 77 34.54 1.11 159 1966 19 7 12 8 18.4 226.8 151.2 0.68 190 12.85 0.84 77 15.88 1.1 130 136.64 11 7 8.9 13.9 48.3 0.37 210 2.55 0.71 77 4.90 1.1 130	1854 SA	1961	<u>6.</u>	-6	ဌ	co	:	20.4	40	0.58	951	9	0.8	77	2		3	
19 7 12 8 18.9 226.8 151.2 0.68 190 12.95 0.84 77 21 21 7 11 7 6.9 15.9 48.3 0.37 210 2.55 0.71 77 83.8	1946 19 7 12 8 18.4 226.8 151.2 0.68 190 12.85 0.84 77 15.88 1.1 150 154 15 15.88 1.1 150 154 15 15 15 15 15 15 1	22 HPC3	6961	91	•~	=	9.5	20.5	424.2	303,0	3	13	14	1,1	11	1.1		32	33, 33
31 7 11 7 6.9 35.9 48.3 0.37 210 2.55 0.71 77 83.8	1964 21 7 11 7 6.9 75.9 48.3 0.37 210 2.55 0.71 77 4.90 1.1 150	2 8703	1966	<u>o-</u>	~	=	con	200	228.8	151.2	0,68	96	12.85	. B	11	15,38		35	70.7
	Mon-Productine	49 8604	¥961	<i>1</i> 3	1	=	F~	5.0	6.5	€B.3	0,37	210	2.55	0.73	11	4.30	3	120	F-7
	27.0 18.6 662.2 16244,6 11199.5 6.20 3330,93 5.39 3246,25 5.97	Total tom Site an	id Non-Produk	eti «e				ec ec											
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACT BOLD OVER 1011 1011 1011 0 110 0 110 0 110 0 110	Intal Secesses Area	я			Ę	4		A 446.11	F 100 F	4		10	۸ 01		30 7764	6		** * * * * * * * * * * * * * * * * * *

ETCHANGE
Capacity
ISITIAA - MB PROBUCTIVE CAPACITY EICHANGE
15111ka

n *6+4

The control of the co

The state of the s

RR - R0850W B16HT (Take Area) 80 FH(S) 971-6 88 FH(S) 971-6 78 F5 951-8 79 F1 951-8 70 H(C) 951-8 70 H(C) 951-8 70 H(C) 951-8 71 H(C) 951-8 72 F5 951-8 73 F5 951-8 74 HS 550-HCF Vets 75 F5 951-8 76 F5 550-HCF Vets 77 F5 F5 951-8 77 F5 F5 951-8 77 F5	· 医血管性性 医克里氏 医克里氏 1888年			i	•	#. ú. l.	± (n)	Cul. age Ann. vield	A.A. I.	Cul. sq# Ann	Cul. sge Ann. vietd	H.A.	Cuit, age	6A.Y)@}
	多级的证券 计不可能 的复数 化二甲基甲酚 的复数 化二甲基甲酚	ę,												
	"收敛的战争以称为农民的战人中中 野野野	92.												
	电影性性性的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词	*	4.4	244.8	180.0	33	\$5	77,58	25.88	11	43.17	17.3	20	87.44
	医排泄性 经经验的 经经验的 经工作证据	2	1.4	311.5	679.0	21.55	\$3	188.73	25.88	2.5	346.79	2.7	2	164.82
	华州的城市的城市的城市的城市的城市	S		81.6	60.0	F 7	er Pr	25.86	23.88	11	31.06	12,3	2	14.76
	# 医致脓性神经性神经炎症状	÷	<i>b</i> .	65	133.7	10.66	ĕ		, s	17	37,32	12:3	£	47.97
	55. 经股份股本股份股份股份股份	E.	b, 0.	5 9 7	159	10,66	7	116.19	ריש קי	4.	104,31	-7	2	134,83
	5. 我只要我们就是我们的"我们的"。 1997年,我们就是我们的"我们的",我们就是我们的"我们"。	<i>;</i> 2	2	\$25.4	354.2	5.	엁	133, 31	æ	13	110.90	ු පො	56	113,60
	股票需要需要 \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P	28	en E	758.5	533.0	9,36	7.7	191,56	E	11	160,11	 60	49	184.00
	\$\$\$\$\$\$\$\$\$\$\$\$\$	75	\$ Z	420.0	0.88C	£.32	8	\$9.00	7.00	11	84,00	9.0	33	46.00
	\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$	ři.	#* ***	3062.0	7	ું છે.	Ç.	133.64	5, 16	11	187, 56	۵. ش	ν,	283.20
	**************************************	23	18.3	435,7	10.1	6	2	161.70	ei ei	7.	11.33	4	25	107,58
	养的保险的的的	13	17 17	98	 	4.59	60	27.	9.6	E,	16,53	4.6	ń	16.50
	57. 保险器器器	: :	1.7	261.8	177,1	9.68	쯦	74.54	6.85	7.2	50,40	\$. \$	S.	50.82
	() 医阴阴炎	:3	0.1	563. 0	255,0	9,68	÷2	105.48	6.23	11	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.0	35	72.60
	5. 8. 8. 8. 8. 8.	£2	48.2	7024.4	1297.8	¥2.:3	¥0	541.77	10.03	11	483,45	11.	37	349,48
	器器器。	FŞ	ë	737.9	164.7	19.6	70	60.51	8.67	11	12.89	÷.	OĐ CH	39.04
### 801-6 #\$P 540-m#4(F Vers #\$P 540-m#4(F Vers #\$P 540-m#4(F Vers	8 君 2	\$3	2.5	95.0	65.0	2	77	23,40	₹. %	11	20, 60	4	œ.	16.00
MSF 540-m+CF Vels 855 540-m+CF Vels 857 540-m+CF Vels	君。	Ą	5.4	2 959	175,	92.	77	170,74	8 34	11	106.30	- ġ	92	82.56
第12章 (140~24cm) (14cm) (14cm	ř	\$2	H	113.6	302.5	8.8	ž.	106.60	7.40	11	# 7 6-02	*;	6	77.44
#SF 540-#+CF Vets	9	*3		40.7	0.50	60	¥7	22.41	1,40	22	16.7	4	gb Gr	16.64
	7	F.7	erec Cr	133.2	275.4	7.53	P-1	10.75	6.6	7.7	4.73	-2	8	62.77
HC(85) 851-M	13	ŧ:	12		308.2	7.68	12	162.31	12,4	4	000 100 110 100	4	170	85.76
HSF 540-840F VALS	33	10	6.6	198.0	138.0	7.58	100	€ 6. CB	5,73	12	37,38	ų.	88	38.40
HC(85) 851-#	13	23		752	702.4	1	6	65.59	18.5		54.96 10.90		- EE	58.83
#C (82) 851-#	2	8	9.6	\$68.¢	397.0	90.4	¥	117.80	60	-	19.46	- - -	95	125,44
	7.	8	ę.	200	4 7 7	55	199	2.5	-	11	e.	-	62	41.15
#1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #	; <u>\$</u>	: £		147.7	0 71	9			6		200		10.7	24
58 HCF 420-P+Scat, Vets -5	: =	: =	2 00 - m	6		3 ::	120		2.5		6.65		107	18.24
												:	:	
「ひたね」 ディのひならもエル原	36.95	6. 6.		11564,1	2183.9	5		2942.91	8,75		2603.32	3,17		551.44
Mon-commercial érush-6			<u></u>											
Mon-Fraductive Land			7.											
*ater														
otal Area			231.9											
AND A REPORTED EXERT (TAKE STREE)														
5 5 5 F. C	ÿ \$	ģ	(5)	0 ×34	4	37 61	4	100	5	ţ-	111 23	6	ť	150 40
	; ;4	÷:	17.0	417.0	0.50	8 8	9 F	145 27	\$		175 80	, ,	3 2	101.70
	ę	5	7	6 17	7 071	, c	2 5	38.6		: :	71.5 0.7	; ;	9	150 37
E-126-8% E	- 50	75	39.5	167.6	525,2	9. 6	27	189,67		11	166.45	, ,	2 92	129,28
otal Froductive Mon-productive	8	28.56	8 F	3/98.8	2146.2	27.4		382.08	8, 40		678,53	6.75		542.10

ारों के किएक			102.7											
COERT Froductive - Taxe pres	37.24	26.67	34.4	14762.9	10335.1	9.6		1727,89	20 27		581,850	7.83		3103,54
Met Difference (Receive Area less Take Area)	5.41	() +-	170	1481.1	884.4	-2.21		3.0	-2,02		-35,60	-0,89	-	492,70
VITAGES TO TRIVIE BROWNING SERVICE	. 613	1 333				. 197			. 6	ı				

APPENDIX XIII REAL ESTATE VALUATION REPORT CROWN GRANT, LOT 223

APPRAISAL OF LOT 223, RUPERT DISTRICT "ROBSON BIGHT"

PREPARED FOR

Holmsen Forestry Ltd. 540 Shannon Way, Delta, British Columbia. V4M 2W5

D. R. COELL & ASSOCIATES INC. -

D. R. COELL & ASSOCIATES, INC.

REAL ESTATE APPRAISERS & CONSULTANTS

RICHARD W. GORDON, A.A.C.E., R.E. (B.C.E.)
MICHAEL A. MARTYN, A.A.C.E.
JOHN B. MILLER, A.A.C.E.
WILFRED C. GAMMIE, C.R.A.

SUITE 203-3347 OAK STREET VICTORIA, B.C. V8X 1R2 TELEPHONE (604) 388-6242

DAVID R. COELL. A.A.C.E., R.E. IB.C.E. ASSOCIATE

Our File: 2231-RA-UC 263

July 17, 1985.

Holmsen Forestry Ltd., 540 Shannon Way, Delta, B.C. V4M 2W5

Attention: Mr. Karsten H. Holmsen, R.P.F., President.

Dear Sir:

Re: Lot 223, Rupert District
"Robson Bight"

Pursuant to your instructions, this is to advise that we have completed an appraisal of the property described above, more particularly described within this report.

It is our considered opinion that the market value (by definition) of the "bare land component" of the subject property as of <u>June 30</u>, 1985, is:

Eighty-Four Thousand, Six Hundred Dollars (\$84,600.00)

A detailed description, summary and analysis leading to the conclusion of value is included herein. Should you require further information with regard to this report or wish to discuss same, please do not hesitate to contact us.

Yours very truly, D.R. COELL & ASSOCIATES INC. Per:

John B. Miller

JBM/k

Lot 223, Rupert District

Mouth of Tsitika River

CONTINGENT AND LIMITING CONDITIONS

The legal description of the subject property as stated herein is that which is recorded at the Victoria Land Titles Office and is assumed to be correct.

Sketches, drawings, diagrams, photographs etc. present in this report are included for the sole purpose of illustration. No legal survey or soil test concerning the subject property has been provided. Accordingly, no responsibility is assumed concerning these matters, or other technical or engineering techniques which would be required to discover any inherent or hidden conditions of the subject property.

The client to whom this report is addressed may use it in deliberations affecting the subject property only, and in so doing, the report should not be extracted but used in its entirety.

The compensation for services rendered do not included a fee for court preparation or appearance. Should either of these be required in connection with this report, additional arrangements are required.

This report involves the gathering, investigation and analysis of material inherent to the purpose of this report. As part of this investigation, it was found necessary to utilize both verbal and documented evidence. A concerted effort has been put forward to verify the accuracy of the information contained herein. The information is believed to be reliable and correct, and has been gathered according to procedures which are recognized by the Appraisal Institute of Canada.

PURPOSE OF THE APPRAISAL AND DEFINITION OF VALUE

Pursuant to instructions, this appraisal has been prepared in an attempt to recognize the following criteria:

- (a) The Highest and Best Use of the property has been estimated through the consideration of all physical, economical and legal factors associated with the property.
- (b) A bare land component of value has been estimated through the utilization of comparable sales transactions. These sales have been adjusted to June 30, 1985, the effective date of the appraisal.
- (c) The definition of value attributable to the bare land component is as follows:

"Market Value is the highest price estimated in terms of money which a property will bring if exposed to sale in the open market, allowing a reasonable time to find a purchaser who buys with the knowledge of all uses to which it is adapted and for which it is capable of being used."

(d) The component of value attributable to the existing forest cover has been estimated by Holmsen Forestry Ltd.

The specific method of valuation can be found in the Timber Appraisal Report prepared by Karsten H. Holmsen, R.P.F.

PROPERTY RIGHTS APPRAISED

The property right appraised is the unencumbered fee simple interest of the deeded property.

FUNCTION OF THE APPRAISAL

The function of the appraisal is to assist the Ministry of Forests, Ministry of Lands, Parks and Housing and MacMillan Bloedel Limited in negotiations to exchange the subject property which will be relinquished by MacMillan Bloedel Limited due to its inclusion within the boundaries of a proposed Ecological Reserve.

REGISTERED OWNER

MacMillan Bloedel Limited

EFFECTIVE DATE OF THE APPRAISAL

June 30, 1985

DATE OF INSPECTION

June 18, 1985

REGIONAL DATA

The Mount Waddington Regional District covers the northern portion of Vancouver Island. Electoral Areas B, C and D run from Sayward in the south to Port Hardy and Cape Scott in the north. The land area involves some 2,191,788 acres and contains the Villages of Alert Bay, Port Alice; District Municipality of Port Hardy and Town of Port McNeill. The 1981 census indicated the overall area to have an estimated population of 14,671 with the following organized area breakdowns:

Alert Bay - 626
Port Alice - 1,668
Port Hardy - 5,075
Port McNeill - 2,474

The Forest Industry is the number one employer with widespread logging operations and a pulp mill at Port Alice. Ranking next in importance is mining and in particular, the Island Copper mine at Coal Harbour. Commercial fishing and a limited amount of tourism round out the local economy.

The area has grown since the late 1970's with the completion of a good all-weather public road link from Port Hardy to Campbell River. In addition, several remote logging camps have downsized, giving employees opportunities to have homes in the Port Hardy and Port McNeill areas.

The area also serves as the southerly terminal for the B.C. Ferries Prince Rupert ferry system.

B.C. GOVERNMENT AIR PHOTOGRAPH

BCC 209 #17

June 14, 1979

D. R. COELL & ASSOCIATES INC. -

LOCATION AND AREA DATA

The subject is located near the north end of Vancouver Island at the mouth of the Tsitika River approximately 24 miles southeast of Port McNeill and approximately 27 miles northwest of Kelsey Bay. The subject is accessible by water only at this time.

SITE DESCRIPTION

As indicated, the subject is located at the mouth of the Tsitika River. In actual fact, the subject forms the delta or flood plain for the Tsitika River.

The subject contains a legal acreage of 94 acres with the following dimensions:

West side	25.95 chains	(1,713 feet)
South side	40.00 chains	(2,640 feet)
East side	40.00 chains	(2,640 feet)
North side	±90.00 chains	(5,940 feet) irregular oceanfrontage

The north side or oceanfrontage, because it is a delta area with tidal influence, does experience shoreline changes.

The subject contains a variety of site conditions. The area west of the Tsitika River is level to gently sloping at the oceanfront and rises up the hillside to 80 - 100 feet in elevation in the southwest corner. The area east of the Tsitika River which contains approximately 20% of the total acreage is steep with a large area of rock outcroppings. The shoreline is steep and rocky.

The Tsitika River enters the property at the southeast corner and flows in a northerly direction to the high water mark of Johnstone Strait. There is some evidence that the riverbed has varied in location over the years since the original survey.

SURVEY PLAN

(Survey Field Notes)

Ct.Dansal.c. Penemud.c. 24621906

<u>Tsitika River</u>

Salt Marsh Area

Typical Forest Cover

Typical Forest Cover

LEGAL DESCRIPTION:

District Lot 223, Rupert Land District

Certificate of Title:- J 98659

REGISTERED OWNER:

MacMillan Bloedel.

Timberland & Properties Division.

1075 West Georgia Street,

Vancouver, B.C.

ASSESSMENTS AND TAXES:

1985 Assessment:

Land \$5,473

Tree Farm Class

Assessed Area - 94.0 ac.

1985 Taxes:

\$403.16

ZONING

The subject is located within the Nimpkish Provincial Forest which requires the Ministry of Forests to manage Crown land and timber. As the subject is a fee simple, Crown granted site, land use controls are the responsibility of the Regional District of Mount Waddington.

The appraiser is advised that the site is zoned A-1 Rural Zone with the following permitted uses and regulations:

PERMITTED USES

In a Rural (A-1) Zone the use of land, buildings and structures is restrited to:

- a) Single family and two family dwellings,
- b) Agricultural uses
- c) Recreational uses and structures
- d) Cemeteries
- e) Public and quasi-public buildings and uses
- f) Garbage dumps, provided that the location of the site in respect of water courses and air pollution has the approval in writing by the Medical Health Officer, or other such person designated by him, or the Director, Pollution Control Board whichever has jurisdiction in the case,
- g) Public utility structures and uses
- h) Buildings and uses accessory to a permitted use in this subsection.

MINIMUM SITE AREA

The minimum site area shall be four (4) ha for single family dwellings and agricultural uses.

DWELLING UNITS PER SITE

There shall be no more than one single family or one two family dwelling per site or parcel.

UNSIGHTLY STORAGE

No parcel shall be used for the wrecking or storage of derelict vehicles or equipment or as a junkyard and no person shall permit such vehicles, equipment or junk to remain on any parcel.

It should be noted that the present registered owner has committed this property to Forestry use as it has been included within the forest management commitment of Tree Farm Licence 25 and Taxation Tree Farm #21.

In addition to the foregoing noted land use controls, the foreshore area located north of the subject has been designated as an Ecological Reserve. This ecological reserve known as the Robson Bight Ecological Reserve, covering a water area of 1248 hectares, was created in 1982 in order to protect valuable killer-whale habitat.

The purpose of this appraisal is to assist in negotiations to acquire an upland component to this ecological reserve.

A detailed description and map of the ecological reserve is included in the addenda of this report.

TIMBER CRUISE SUMMARY
AND
FOREST COVER MAP

D. R. COELL & ASSOCIATES INC. -

		VER					Page	16
UTILIZATION		VANCOUVER CAMPBELL RIVE	œ.					34.8 0.18 16.43 4.43
CLOSE			ZONE					ir # # #i
J C		CT AFE	<u>.</u>					TIMBER
		FOREST REFOREST DI	<u></u>	09/4"00114 - 09/4"00114 - 100:	85.01 12.85.12 8.44.26.12.43	0.00 1.76 2.76 2.76	0000000000	87.6 MERCH FRUSH FOCK TOTAL
			£	NN 00000NN	8 40 080 080 64	004004 \$\$\$0444 \$\$\$05444		0.0
	E DATA	SFECIES	C	6.400 0.44 0.044 0.044	79.03 50.00 2.10 4.11.4	0000000 400000 600000000000000000000000	00/14/15/00/1040 00/11/4004080	30.7
	COMPUTERIZED	NET FACTORS ALL ZONAL S	£	2626 8826 8844 8844 8844 8844 8444 8444	553.8 56.9 441.2	48014-0 40300-4 6000-64	00440440040 00770W7W09W	30.5
-	GRADES - NOF	555°		111306 10308 37.08 37.00 10.00 10.00	452.4 455.6 833.8 40.7	2000 2000 2000 2000 2000 2000 2000	000404N40V0 000m0N0V0N0	22.6
	S S S S S S S	17.5 30.0 15.0	14.E	1060 207 207 200 200 200 33 33 100 100 100 100 100 100 100 100	28.8 11.9 27.2 27.2	0.71 0.71 0.67 2.24 4.24	00000HV4040	61.5
		MINIMUM DBH STUMP HEIGHT TUP DIAMETER LOG LENGTH	ET BASI	46 88 44 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	436.0 331.24 381.8 4.8	11.63 22.25 00.72 1.69 22.25	40400 m40000 m240000	48.4 41 FRISH 66 107
	985	223	~	0000 0000 0000 0000 0000 0000 0000 0000 0000	4 04000004 7400340 0000000	10001	00// # # # # # # # # # # # # # # # # # #	34.4 29.1 29.3 441 666
	+-4	101		なななな なばば	5" 5EE	EE EE E	инининини	K X X
FROJECT NO. 522/9	REFORT DATE 19 JUNE	ERI TANE AREA CUTTING PERMIT HERCH. HECTARES	000000	FOR SET 183/187/187/187/187/187/187/187/187/187/187	TREES/HA (LIVEIDE) DBH, AVG (LIVEIDE) TREES 20-CM DBH CL, SNAGS/HA (DU) DBH, AVG (DU) HEIGHT, AVG MERCH HEIGHT, AVG MERCH	GROSS /TREE NET /TREE 10M LOGS/TREE GROSS /10M LOG NET /10M LOG 10M LOGS/NET M3 SFECIAL REFORT	SUMMARY OF GRADES A 11 FEELER C 43 FEELER D 41 LUMBER H 42 SAWLOG J 44 SAWLOG X 45 UTILITY * 66 CHIPFER	SAM. ERROR (95% CI) COEFF. OF VARIATION NO. POTENTIAL TREES NO. OF FLOTS, MEASURE TOTAL

MINISTRY OF LAND FARKS

MINISTRY OF LAND PARKS COMFILED BY REID, COLLINS & ASSOC.LTD CU CLOSE UTILIZATION CRUISED BY REID, COLLINS & ASSOC.LTD	TENURE AND LOCATION	ERI TANE AREA LOT 223		NUMBER OF CUT BLOCKS ONE	FOREST INVENTORY ZONE R	L LOSS FACTORS	ARLE. FOREST REGION 1, VANCOUVER	2.5 FOREST DISTRICT 8 CAMPRELL RIVER		TOTAL FLOTS NO.TREES STANDARD COEFF.OF SAMPLING NET M3 COMFILED DEVIATION VARIATION 1 S.E.	27249 107 838 31.1 % 4.9 %	8964 32 263 245.7879 27.9 x 5.2 x 6585 30 229 235.3801 35.3 x 7.5 x 4471 11 163 498.3023 43.8 x 13.4 x 901 4 28 260.4351 40.5 x 20.2 x 3841 22 156 347.5222 69.0 x 15.8 x
							-	-				
					BREAKAGE	JFRIATE ZONA	JRADES - VARI	IN 2.5, MAX 1	TION	AVE.NET M3/HA.	783.0	924.1 1034.2 643.6 643.6
KOJECT NO. 522/9 EFORT DATE 19 JUNE 1985	SFECIFICATIONS	cu 17.5 cm	CU 15.0 CM	CU 30.0 CM	CU DECAY WASTE BREAKAGE	ALL SPECIES AFFROFRIATE ZONAL LO	CU MOF ESTIMATED GRADES - VARIARL	CU 10.0 METRES, MIN 2.5, MAX 12.	KUISE STATISTICS OF CLOSE UTILIZATION	TIMBER TYFE HECTARES AVE.NET H3/HA.	34.8 783.0	BH 961-6 H 961-6 S 851-6 F(S) 340-6 HS(C) 941-F 7.7 501.4

LEGEND

Type Number	Description		Area (ha)
1	вн	961-G	9.7
2	н	961-G	7.8
3	S	851-G	4.3
4	F(5)	340-G	1.4
5	HS(C)	941-P	7.7
6	D	340-M	3.9
	Brush		0.3
	Rock		1.3
Total			36.4

Scale: 1:5 000

June 1985 - 522/9

D. R. COELL & ASSOCIATES INC. -

HIGHEST AND BEST USE

Highest and Best Use refers to the use which is, or can be made, of the land to the best advantage, and is defined as "that use which is most likely to produce the greatest net return in terms of money and/or amenities over a given period of time". The principle of highest and best use is fundamental to the concept of value in real estate. The decision made as to a property's highest and best use must be a legal one from the standpoint of zoning, health regulations and the like, and there must exist a demand for the use.

Ecological Reserve

The purpose of this appraisal is to assist the owner, MacMillan Bloedel Ltd. and the Government of British Columbia in negotiations to effect a land exchange that will see this property included within the Robson Bight Ecological Reserve. A foreshore area of 3084 acres (1248 ha.) was designated on June 17, 1982 as the Robson Bight Ecological Reserve. The purpose of this ecological reserve is to protect and preserve killer whale habitat.

Location

The subject is considered to be in a remote location, $\pm 40~{\rm km}$ southeast of Port McNeill and it is surrounded by Crown land under forest management.

Forest Cover

The property was recently cruised at which time it was estimated that 34.8 ha (86 acres) contained merchantable timber and that the timbered area consisted of predominantly Good growing site. It is estimated that the property would yield a net volume of 27,249 cubic meters of merchantable timber or 783m^3 per hectare.

Recreational Potential

In recent years, the area has become popular because of the Ecological Reserve and the increasing public awareness of the importance of protecting the killer whale habitat.

Considering the foregoing factors, the appraiser is of the opinion that the highest and best use for the subject property is as a holding property, pending the growth in recreational demand and the limited utilization of the forest resource, pursuant to the restrictions of the Ecological Reserve.

DIRECT SALES COMPARISON APPROACH

The direct sales comparison approach is the utilization and analysis of actual market conditions and transactions that have concerned properties similar to the one being appraised. It is a process of comparing sales, listings and other factors affecting the market value.

The direct sales comparison approach can usually be considered good evidence of value as it represents the actions of the typical buyer, user or investor of property.

The approach requires the rating of the property being appraised with other properties for which the market data is known. All the relevant facts about each sale property used are assembled and weighed against the corresponding facts relating to the subject property. Thus a standard is established upon which an estimate of value for the property under appraisal may be based. The valuation assumes the land is vacant and capable of utilization within its existing zoning.

As a result of the appraiser's investigations and analysis, a cross-section of the available transactions have been analysed, and narrowed to those contained in this report.

Sale No. 1

Legal Description:

Location:

Lot size/area:

Sale Price:

Sale Date:

Indicated price per acre:

Zoning:

Comments:

Lot 157, Renfrew District

Port Renfrew - Port San Juan

64.5 acres

\$156,600

January 1985

* \$647 per acre (bare land)

Rura1

* Merchantable timber is estimated to

contribute \$114,900.

A remote property within the proposed boundary of Pacific Rim National Park. Negotiations to purchase were carried

out over a three year period.

Pachena Point - south of Bamfield

Sale No. 2

Legal Description:

That part of the fractional Southeast & of Lot 280 Barclay District, lying to the East of Parcel "B" of said lot and to the East of the Pachena Light house Reserve as shown outlined in red on Plan deposited under

No. 61256-I

Location:

107 acres

Lot size/area:

Sale Price:

Sale Date:

Indicated price per acre:

Zoning:

Comments:

\$216,500

4-.**0**,**0**00

December 1981

*\$793 per acre (bare land)

Rural

*Merchantable timber is estimated to contri-

bute \$131,600.

A remote parcel without road access on a

rugged section of coastline.

Sale No. 3

Legal Description:

Section 146, Renfrew District

Location:

Owen Point - Port San Juan 725 acres

Lot size/area:

\$1,682,000

Sale Price:

Sale Date:

January 1982

Indicated price per acre:

*\$607 (bare land)

Comments:

This sale involved a waterfront timberland property which was purchased by the Provincial Government for inclusion in Pacific Rim

Government for inclusion in Pacific Rim National Park. The property was appraised independently at \$1,682,000 with an allocated

bare land value of *\$440,000.

Sale No. 4

Legal Description:

Lots 1486, 1487, 1488 & 1489, New Westminster

District

Location:

Hardy Island - Jervis Inlet

Lot size/area:

1,699 acres

Sale Price:

\$1,200,000

Sale Date:

June 1985

Indicated price per acre:

\$706

Comments:

Four district lots which make up the entire area of Hardy Island. This island was purchased in the late 70's and subsequently logged, leaving a narrow fringe of trees along the shoreline. This is a popular boating area and the south side of the island

offers seasonal small boat anchorages.

Sale No. 5

Legal Description:

Location:

Hot Springs Cove - Refuge Cove

Lot size/area:

231 acres

Sale Price:

\$188,500

Sale Date:

May 1985

Indicated price per acre:

\$816

Comments:

An oceanfront site consisting of six properties located just north of the Hot Springs Cove Park. The property is improved with residential structures which provide a nominal contribution in the purchase price. The land did contain some cedar suitable for shakes which is presently being extracted.

Parts of D.L. 1894 & 1371 Clayoquot District

Sale No. 6

Legal Description:

D.L. 156, Range 1, Coast District, except

that part included in Plan 645.

Location:

Shoal Bay - north side East Thurlow Island

Lot size/area:

144 acres

Sale Price:

\$185,000

Sale Date:

March 1985

Indicated price per acre:

\$1,285 per acre

Comments:

A waterfront property with good quality anchorage and marginal forest cover.

Sale No. 7

Legal Description:

Lot 10 Sayward District and Lot A, D.L. 1028

Plan 4063 Sayward District

Location:

Open Bay - Quadra Island

Lot size/area:

275 acres

Sale Price:

\$550,000*

Sale Date:

February 1984

Indicated price per acre:

Comments:

\$1,455 per acre

* It is reported that the merchantable timber contributed approximately \$150,000 at the

time of sale.

SALES SUMMARY

Sale <u>No.</u>	Location	Size/acres	Sale Price per Acre	Sale Date
1	Port Renfrew	64.5	\$ 647	January 1985
2	Pachena Point	107.0	793	December 1981
3	Owen Point	725.0	607	January 1982
4	Hardy Island	1,699.0	706	June 1985
5	Hot Springs Cove	231.0	816	May 1985
6	Shoal Bay	144.0	1,285	March 1985
7	Open Bay	275.0	1,455	February 1984.

Sales Analysis

Our sales investigation covered both the east and west coasts of Vancouver Island. Market trading of waterfront timberland has been very limited over the past four years with the downturn in the economy and, in particular, a recession in the Forest Industry.

We have investigated the Government acquisition of three timberland acreages associated with Pacific Rim National Park. In all three cases, the sites were remote waterfront sites and timber cruise and economic timber value estimates were available.

Sale No. 1 - \$647 per acre (bare land) - Port Renfrew

A steep, rugged timberland acreage that did not have road access. Although this site was within the mouth of Port San Juan Harbour, its topography required land access rather than water access for logging. The vendor was an informed land owner of resource properties and conducted extensive negotiations before a final sale was executed. The subject enjoys superior site conditions and logging opportunities.

Sale No. 2 - \$793 per acre (bare land) - Pachena Point

A remote site on the west coast of Vancouver Island situated adjacent to the Pachena Lighthouse on the West Coast Life Saving Trail. This property has a rugged exposed coast shoreline that would not permit log

booming. This sale is considered inferior to the subject, however, it occurred at the peak of the marketplace in 1981.

Sale No. 3 - \$607 per acre (bare land) - Owen Point

A larger acreage located adjacent to Sale No. 1 near Port Renfrew. The vendor was a major forest products company who was well informed as to the quantity and value of timber.

Sale No. 4 - \$706 per acre - Hardy Island

A large acreage transaction involving an entire island. It is reported that the purchasers are a syndicated group who have development plans for the island. The island was clear-cut logged with the exception of a small fringe along the shoreline. An upward adjustment is considered necessary to reflect the difference in size.

Sale No. 5 - \$816 per acre - Hot Springs Cove

A group of six properties totalling 231 acres located on the west coast of Vancouver Island north of Tofino. The sale itself does not contain any hot springs, however, it is adjacent to the new Hot Springs Cove Provincial Park which is gaining in popularity.

Sale No. 6 - \$1,285 per acre - Shoal Bay

A recent sale of an acreage on the east side of Vancouver Island located on the north side of East Thurlow Island. The sale is reported to contain only marginal timber values, however, it does have good sheltered anchorage.

Sale No. 7 - \$1,455 per acre (bare land) - Open Bay - Quadra Island

A timberland acreage on the east side of Quadra Island with extensive good quality waterfrontage. The purchaser bought the property for its forest resources. Access to the site is by water only, however, its location is considered superior to the subject and a downward adjustment is required.

In reviewing the market activity, the appraiser considers Sales No. 1 to No. 3, which are Government purchases, to provide a limited indicator to value due to the non-arms length nature of the transactions. Sale No. 4 is much larger in size and it would appear to have been purchased for future development purposes as well as its capability for growing timber. Sale No. 5 consisted of six parcels which when assembled made a contiguous waterfront block. Sales No. 6 and 7 are located on islands in Johnstone Strait and contained excellent waterfront site conditions.

After carefully considering the relevant factors set out above for each of the comparables in relation to the subject and in addition, the overall condition of the large acreage market activity, the appraiser is of the opinion that the market value of the subject's "bare land" as of June 30, 1985 was:

94 acres at \$900 per acre = \$84,600

Ecological Reserve No.: 111

Order-in-Council No.: 1134

1134, 1148

File Number:

0357634

Name of Reserve:

Robson Bight Ecological Reserve

Date Established:

June 17, 1982

Location:

Robson Bight is a small, remote bay on the northeast coast of Vancouver Island situated 40 km southeast of Port McNeill and 43 km northwest of Sayward at the mouth of the Tsitika River.

Legal Description:

All that foreshore or land covered by water in the vicinity of Robson Bight, Rupert District more particularly described as commencing at the point of intersection of the right bank of Sir John Creek with the southerly boundary of Johnstone Strait; thence due north a distance of 1000 metres; thence southeasterly in a straight line 8900 metres more or less to a point 1000 metres due north of the point of intersection of the left bank of Schmidt Creek and the southerly boundary of the aforementioned Johnstone Strait; thence due south 1000 metres to said point; thence in a general northwesterly and southwesterly direction along the southerly boundary of Johnstone Strait to a point due east of the northwest corner of Lot 223, Rupert District; thence due west to said point; thence continuing along said southerly boundary of Johnstone Strait in a general northwesterly direction to the aforementioned point of commencement, containing 1248 ha more or less.

Area:

1,248 ha (water)

Object and Community
Type:

The Robson Bight area has been set aside to protect killer whales and a crucial part of their habitat. Killer whales use Robson Bight as their home base. Behaviours observed there include resting and sleeping, playing and rubbing on beaches and rocks. It is suspected, but not confirmed, that Robson Bight is significant in killer whale reproduction.

